Remove unused python scripts
parent
ce5fe304cb
commit
789308212b
@ -1,40 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
#
|
||||
# Convert image to Javascript compatible base64 Data URI
|
||||
# Copyright (C) 2018 The noVNC Authors
|
||||
# Licensed under MPL 2.0 (see docs/LICENSE.MPL-2.0)
|
||||
#
|
||||
|
||||
import sys, base64
|
||||
|
||||
try:
|
||||
from PIL import Image
|
||||
except:
|
||||
print "python PIL module required (python-imaging package)"
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print "Usage: %s IMAGE JS_VARIABLE" % sys.argv[0]
|
||||
sys.exit(1)
|
||||
|
||||
fname = sys.argv[1]
|
||||
var = sys.argv[2]
|
||||
|
||||
ext = fname.lower().split('.')[-1]
|
||||
if ext == "png": mime = "image/png"
|
||||
elif ext in ["jpg", "jpeg"]: mime = "image/jpeg"
|
||||
elif ext == "gif": mime = "image/gif"
|
||||
else:
|
||||
print "Only PNG, JPEG and GIF images are supported"
|
||||
sys.exit(1)
|
||||
uri = "data:%s;base64," % mime
|
||||
|
||||
im = Image.open(fname)
|
||||
w, h = im.size
|
||||
|
||||
raw = open(fname).read()
|
||||
|
||||
print '%s = {"width": %s, "height": %s, "data": "%s%s"};' % (
|
||||
var, w, h, uri, base64.b64encode(raw))
|
@ -1,206 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Use matplotlib to generate performance charts
|
||||
Copyright (C) 2018 The noVNC Authors
|
||||
Licensed under MPL-2.0 (see docs/LICENSE.MPL-2.0)
|
||||
'''
|
||||
|
||||
# a bar plot with errorbars
|
||||
import sys, json
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.font_manager import FontProperties
|
||||
|
||||
def usage():
|
||||
print "%s json_file level1 level2 level3 [legend_height]\n\n" % sys.argv[0]
|
||||
print "Description:\n"
|
||||
print "level1, level2, and level3 are one each of the following:\n";
|
||||
print " select=ITEM - select only ITEM at this level";
|
||||
print " bar - each item on this level becomes a graph bar";
|
||||
print " group - items on this level become groups of bars";
|
||||
print "\n";
|
||||
print "json_file is a file containing json data in the following format:\n"
|
||||
print ' {';
|
||||
print ' "conf": {';
|
||||
print ' "order_l1": [';
|
||||
print ' "level1_label1",';
|
||||
print ' "level1_label2",';
|
||||
print ' ...';
|
||||
print ' ],';
|
||||
print ' "order_l2": [';
|
||||
print ' "level2_label1",';
|
||||
print ' "level2_label2",';
|
||||
print ' ...';
|
||||
print ' ],';
|
||||
print ' "order_l3": [';
|
||||
print ' "level3_label1",';
|
||||
print ' "level3_label2",';
|
||||
print ' ...';
|
||||
print ' ]';
|
||||
print ' },';
|
||||
print ' "stats": {';
|
||||
print ' "level1_label1": {';
|
||||
print ' "level2_label1": {';
|
||||
print ' "level3_label1": [val1, val2, val3],';
|
||||
print ' "level3_label2": [val1, val2, val3],';
|
||||
print ' ...';
|
||||
print ' },';
|
||||
print ' "level2_label2": {';
|
||||
print ' ...';
|
||||
print ' },';
|
||||
print ' },';
|
||||
print ' "level1_label2": {';
|
||||
print ' ...';
|
||||
print ' },';
|
||||
print ' ...';
|
||||
print ' },';
|
||||
print ' }';
|
||||
sys.exit(2)
|
||||
|
||||
def error(msg):
|
||||
print msg
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
#colors = ['#ff0000', '#0863e9', '#00f200', '#ffa100',
|
||||
# '#800000', '#805100', '#013075', '#007900']
|
||||
colors = ['#ff0000', '#00ff00', '#0000ff',
|
||||
'#dddd00', '#dd00dd', '#00dddd',
|
||||
'#dd6622', '#dd2266', '#66dd22',
|
||||
'#8844dd', '#44dd88', '#4488dd']
|
||||
|
||||
if len(sys.argv) < 5:
|
||||
usage()
|
||||
|
||||
filename = sys.argv[1]
|
||||
L1 = sys.argv[2]
|
||||
L2 = sys.argv[3]
|
||||
L3 = sys.argv[4]
|
||||
if len(sys.argv) > 5:
|
||||
legendHeight = float(sys.argv[5])
|
||||
else:
|
||||
legendHeight = 0.75
|
||||
|
||||
# Load the JSON data from the file
|
||||
data = json.loads(file(filename).read())
|
||||
conf = data['conf']
|
||||
stats = data['stats']
|
||||
|
||||
# Sanity check data hierarchy
|
||||
if len(conf['order_l1']) != len(stats.keys()):
|
||||
error("conf.order_l1 does not match stats level 1")
|
||||
for l1 in stats.keys():
|
||||
if len(conf['order_l2']) != len(stats[l1].keys()):
|
||||
error("conf.order_l2 does not match stats level 2 for %s" % l1)
|
||||
if conf['order_l1'].count(l1) < 1:
|
||||
error("%s not found in conf.order_l1" % l1)
|
||||
for l2 in stats[l1].keys():
|
||||
if len(conf['order_l3']) != len(stats[l1][l2].keys()):
|
||||
error("conf.order_l3 does not match stats level 3")
|
||||
if conf['order_l2'].count(l2) < 1:
|
||||
error("%s not found in conf.order_l2" % l2)
|
||||
for l3 in stats[l1][l2].keys():
|
||||
if conf['order_l3'].count(l3) < 1:
|
||||
error("%s not found in conf.order_l3" % l3)
|
||||
|
||||
#
|
||||
# Generate the data based on the level specifications
|
||||
#
|
||||
bar_labels = None
|
||||
group_labels = None
|
||||
bar_vals = []
|
||||
bar_sdvs = []
|
||||
if L3.startswith("select="):
|
||||
select_label = l3 = L3.split("=")[1]
|
||||
bar_labels = conf['order_l1']
|
||||
group_labels = conf['order_l2']
|
||||
bar_vals = [[0]*len(group_labels) for i in bar_labels]
|
||||
bar_sdvs = [[0]*len(group_labels) for i in bar_labels]
|
||||
for b in range(len(bar_labels)):
|
||||
l1 = bar_labels[b]
|
||||
for g in range(len(group_labels)):
|
||||
l2 = group_labels[g]
|
||||
bar_vals[b][g] = np.mean(stats[l1][l2][l3])
|
||||
bar_sdvs[b][g] = np.std(stats[l1][l2][l3])
|
||||
elif L2.startswith("select="):
|
||||
select_label = l2 = L2.split("=")[1]
|
||||
bar_labels = conf['order_l1']
|
||||
group_labels = conf['order_l3']
|
||||
bar_vals = [[0]*len(group_labels) for i in bar_labels]
|
||||
bar_sdvs = [[0]*len(group_labels) for i in bar_labels]
|
||||
for b in range(len(bar_labels)):
|
||||
l1 = bar_labels[b]
|
||||
for g in range(len(group_labels)):
|
||||
l3 = group_labels[g]
|
||||
bar_vals[b][g] = np.mean(stats[l1][l2][l3])
|
||||
bar_sdvs[b][g] = np.std(stats[l1][l2][l3])
|
||||
elif L1.startswith("select="):
|
||||
select_label = l1 = L1.split("=")[1]
|
||||
bar_labels = conf['order_l2']
|
||||
group_labels = conf['order_l3']
|
||||
bar_vals = [[0]*len(group_labels) for i in bar_labels]
|
||||
bar_sdvs = [[0]*len(group_labels) for i in bar_labels]
|
||||
for b in range(len(bar_labels)):
|
||||
l2 = bar_labels[b]
|
||||
for g in range(len(group_labels)):
|
||||
l3 = group_labels[g]
|
||||
bar_vals[b][g] = np.mean(stats[l1][l2][l3])
|
||||
bar_sdvs[b][g] = np.std(stats[l1][l2][l3])
|
||||
else:
|
||||
usage()
|
||||
|
||||
# If group is before bar then flip (zip) the data
|
||||
if [L1, L2, L3].index("group") < [L1, L2, L3].index("bar"):
|
||||
bar_labels, group_labels = group_labels, bar_labels
|
||||
bar_vals = zip(*bar_vals)
|
||||
bar_sdvs = zip(*bar_sdvs)
|
||||
|
||||
print "bar_vals:", bar_vals
|
||||
|
||||
#
|
||||
# Now render the bar graph
|
||||
#
|
||||
ind = np.arange(len(group_labels)) # the x locations for the groups
|
||||
width = 0.8 * (1.0/len(bar_labels)) # the width of the bars
|
||||
|
||||
fig = plt.figure(figsize=(10,6), dpi=80)
|
||||
plot = fig.add_subplot(1, 1, 1)
|
||||
|
||||
rects = []
|
||||
for i in range(len(bar_vals)):
|
||||
rects.append(plot.bar(ind+width*i, bar_vals[i], width, color=colors[i],
|
||||
yerr=bar_sdvs[i], align='center'))
|
||||
|
||||
# add some
|
||||
plot.set_ylabel('Milliseconds (less is better)')
|
||||
plot.set_title("Javascript array test: %s" % select_label)
|
||||
plot.set_xticks(ind+width)
|
||||
plot.set_xticklabels( group_labels )
|
||||
|
||||
fontP = FontProperties()
|
||||
fontP.set_size('small')
|
||||
plot.legend( [r[0] for r in rects], bar_labels, prop=fontP,
|
||||
loc = 'center right', bbox_to_anchor = (1.0, legendHeight))
|
||||
|
||||
def autolabel(rects):
|
||||
# attach some text labels
|
||||
for rect in rects:
|
||||
height = rect.get_height()
|
||||
if np.isnan(height):
|
||||
height = 0.0
|
||||
plot.text(rect.get_x()+rect.get_width()/2., height+20, '%d'%int(height),
|
||||
ha='center', va='bottom', size='7')
|
||||
|
||||
for rect in rects:
|
||||
autolabel(rect)
|
||||
|
||||
# Adjust axis sizes
|
||||
axis = list(plot.axis())
|
||||
axis[0] = -width # Make sure left side has enough for bar
|
||||
#axis[1] = axis[1] * 1.20 # Add 20% to the right to make sure it fits
|
||||
axis[2] = 0 # Make y-axis start at 0
|
||||
axis[3] = axis[3] * 1.10 # Add 10% to the top
|
||||
plot.axis(axis)
|
||||
|
||||
plt.show()
|
Loading…
Reference in New Issue