The RFB Protocol

Tristan Richardson
RealVNC Ltd
(formerly of Olivetti Research Ltd / AT&T Labs Cambridge)

Version 3.8
Last updated 24 November 2009

Contents

1 [Introduction 3
2 Display Protocol 3
3 Input Protocol 4
4 Representation of pixel data 4
5 Protocol extensions 5
6 Protocol Messages 5

6.1 HandshakingMessages 7

6.2

6.3

6.4

6.1.1 ProtocolVersion.
6.1.2 Security

6.1.3 SecurityResult 11
Security TYPES o 12
6.2.1 None 13
6.2.2 VNC Authentication 14
Initialisation Messages 15
6.3.1 Clientlnit 16
6.3.2 Serverlnit 17
Clienttoservermessages v v v v i i i i 19

*James Weatherall, Andy Harter and Ken Wood also helped in the desiga BRRR protocol

CONTENTS 2

6.5

6.6

6.7

6.4.1 SetPixelFormat 20
6.4.2 SetEncodings 21
6.4.3 FramebufferUpdateRequest 22
6.44 KeyEvent 23
6.4.5 PointerEvent 25
6.4.6 ClientCutText., 26
Servertoclientmessages 27
6.5.1 FramebufferUpdate 28
6.5.2 SetColourMapEntries. 29
6.5.3 Bell 30
6.5.4 ServerCutText, 31
Encodings 32
6.6.1 Rawencoding. 33
6.6.2 CopyRectencoding. 34
6.6.3 RREencoding 35
6.6.4 Hextileencoding, 36
6.6.5 ZRLEencoding., 38
Pseudo-encodings e 41
6.7.1 Cursorpseudo-encoding 42

6.7.2 DesktopSize pseudo-encoding 43

1 INTRODUCTION 3

1 Introduction

RFB (“remote framebufféy is a simple protocol for remote access to graphical user
interfaces. Because it works at the framebuffer level it is applicabld! teirdow-

ing systems and applications, including X11, Windows and Macintosh. RFBeis th
protocol used in VNC (Virtual Network Computing).

The remote endpoint where the user sits (i.e. the display plus keybodad anihter)
is called the RFB client or viewer. The endpoint where changes to the lixzfee
originate (i.e. the windowing system and applications) is known as the RiWBrser

RFB Server RFB Client

RFB —
Protocol

RFB is truly a “thin client” protocol. The emphasis in the design of the RFB pabtoc

is to make very few requirements of the client. In this way, clients can run on the
widest range of hardware, and the task of implementing a client is made as sisnple
possible.

The protocol also makes the client stateless. If a client disconnects fgpraraserver
and subsequently reconnects to that same server, the state of the ufarantepre-
served. Furthermore, a different client endpoint can be used tcecbtm the same
RFB server. At the new endpoint, the user will see exactly the same gshpisier
interface as at the original endpoint. In effect, the interface to the uspplica-
tions becomes completely mobile. Wherever suitable network connectivity dkists
user can access their own personal applications, and the state of piplisatens is
preserved between accesses from different locations. This psothideuser with a
familiar, uniform view of the computing infrastructure wherever they go.

2 Display Protocol

The display side of the protocol is based around a single graphics primfiue
a rectangle of pixel data at a given x,y position’At first glance this might seem

3 INPUT PROTOCOL 4

an inefficient way of drawing many user interface components. Howeallewing
various different encodings for the pixel data gives us a large degfréexibility in
how to trade off various parameters such as network bandwidth, cliawirdy speed
and server processing speed.

A seqguence of these rectangles makdsamebuffer updatéor simply updatg. An
update represents a change from one valid framebuffer state to gredhiersome
ways is similar to a frame of video. The rectangles in an update are usuallintdisjo
but this is not necessarily the case.

The update protocol is demand-driven by the client. That is, an updatdyisent

from the server to the client in response to an explicit request from thet.clihis

gives the protocol an adaptive quality. The slower the client and the rietave, the
lower the rate of updates becomes. With typical applications, changes tntiecesea
of the framebuffer tend to happen soon after one another. With a slovt alielor

network, transient states of the framebuffer can be ignored, resultilegsmetwork
traffic and less drawing for the client.

3 Input Protocol

The input side of the protocol is based on a standard workstation modédeyfboard
and multi-button pointing device. Input events are simply sent to the servireby
client whenever the user presses a key or pointer button, or whetie/gointing
device is moved. These input events can also be synthesised from othetamdard
I/0 devices. For example, a pen-based handwriting recognition enginé¢ gegérate
keyboard events.

4 Representation of pixel data

Initial interaction between the RFB client and server involves a negotiatitmeddr-

mat and encodingwith which pixel data will be sent. This negotiation has been de-
signed to make the job of the client as easy as possible. The bottom line is that the
server must always be able to supply pixel data in the form the client widotgever

if the client is able to cope equally with several different formats or enggliih may
choose one which is easier for the server to produce.

Pixel formatrefers to the representation of individual colours by pixel values. The
most common pixel formats are 24-bit or 16-bit “true colour”, where bitdfavithin

the pixel value translate directly to red, green and blue intensities, and‘@stour
map” where an arbitrary mapping can be used to translate from pixel velubge
RGB intensities.

Encodingrefers to how a rectangle of pixel data will be sent on the wire. Evetgnec
gle of pixel data is prefixed by a header giving the X,Y position of the rggtteon the
screen, the width and height of the rectangle, andrasoding typevhich specifies the
encoding of the pixel data. The data itself then follows using the specifiamtiery.

The encoding types defined at presentRagy CopyReGtRRE HextileandZRLE In

5 PROTOCOL EXTENSIONS 5

practice we normally use only thERLE Hextile and CopyRectncodings since they
provide the best compression for typical desktops. See section 6.@l&scaption of
each of the encodings.

5 Protocol extensions
There are a number of ways in which the protocol can be extended:

New encodings A new encoding type can be added to the protocol relatively eas-
ily whilst maintaining compatibility with existing clients and servers. Existing
servers will simply ignore requests for a new encoding which they dapjpaert.
Existing clients will never request the new encoding so will never seenglets
encoded that way.

Pseudo encodings In addition to genuine encodings, a client can request a “pseudo-
encoding” to declare to the server that it supports a certain extension to the
protocol. A server which does not support the extension will simply igtizee
pseudo-encoding. Note that this means the client must assume that the serve
does not support the extension until it gets some extension-specificroatifin
from the server. See section 6.7 for a description of current psendodings.

New security types Adding a new security type gives the ultimate flexibility in mod-
ifying the behaviour of the protocol without sacrificing compatibility with exist-
ing clients and servers. A client and server which agree on a newityeigype
can effectively talk whatever protocol they like after that - it doesndassarily
have to be anything like the RFB protocol.

Under no circumstances should you use a different protocol version number. Pro-
tocol versions are defined by the maintainers of the RFB protocol, RealMNCIf

you use a different protocol version number then you are not RFB C \¢bimpati-
ble. To ensure that you stay compatible with the RFB protocol it is importanythat
contact RealVNC Ltd to make sure that your encoding types and securdy tgnot
clash. Please see the RealVNC website at http://www.realvnc.com for dethitsvof
to contact us; sending a message to the VNC mailing list is the best way to getim tou
and let the rest of the VNC community know.

6 Protocol M essages

The RFB protocol can operate over any reliable transport, either by@rs or message-
based. Conventionally it is used over a TCP/IP connection. There & skages to
the protocol. First is the handshaking phase, the purpose of which isge agon the
protocol version and the type of security to be used. The second stagénigialisa-
tion phase where the client and server excha@lientlnit and Serverlnitmessages.
The final stage is the normal protocol interaction. The client can sendhexdgc

6 PROTOCOL MESSAGES 6

messages it wants, and may receive messages from the server ak. aAksese
messages begin withraessage-typleyte, followed by any message-specific data.

The following descriptions of protocol messages use the basic typesl6, U32,

S8, S16, S32. These represent respectively 8, 16 and 32-bit unsigned integars an
8, 16 and 32-bit signed integers. All multiple byte integers (other than padekes
themselves) are in big endian order (most significant byte first).

The typePl XEL is taken to mean a pixel value bfites Per Pizel bytes, wheres x
bytesPer Pixzel is the number obits-per-pixelas agreed by the client and server —
either in theServerlnitmessage (section 6.3.2) ofSatPixelFormamessage (section
6.4.1).

6.1 HANDSHAKING MESSAGES

6.1 Handshaking Messages

6.1 HANDSHAKING MESSAGES 8

6.1.1 ProtocolVersion

Handshaking begins by the server sending the clid?rbtocolVersiormessage. This
lets the client know which is the highest RFB protocol version number stgapoy
the server. The client then replies with a similar message giving the versiobanof
the protocol which should actually be used (which may be different to thated by
the server). A client should never request a protocol version hidaer that offered
by the server. It is intended that both clients and servers may provide lspeief
backwards compatibility by this mechanism.

The only published protocol versions at this time are 3.3, 3.7, 3.8 (versbow&s
wrongly reported by some clients, but this should be interpreted by akseas 3.3).
Addition of a new encoding or pseudo-encoding type does not requifeaage in
protocol version, since a server can simply ignore encodings it ddesderstand.

The ProtocolVersionmessage consists of 12 bytes interpreted as a string of ASCII
characters in the formatRFB xxx. yyy\ n" wherexxx andyyy are the major and
minor version numbers, padded with zeros.

No. of bytes| Value

12 "RFB 003. 003\ n" (hex 52 46 42 20 30 30 33 2e 30 30 33 0a)
or

No. of bytes| Value

12 "RFB 003. 007\ n" (hex 52 46 42 20 30 30 33 2e 30 30 37 0a)
or

No. of bytes| Value
12 "RFB 003. 008\ n" (hex 52 46 42 20 30 30 33 2e 30 30 38 0a)

6.1 HANDSHAKING MESSAGES 9

6.1.2 Security

Once the protocol version has been decided, the server and client gnestan the
type of security to be used on the connection.

Version 3.7 onwards The server lists the security types which it supports:

No. of bytes Type [Value] | Description
1 us number-of-security-types
number-of-security-types U8 array security-types

If the server listed at least one valid security type supported by the client, th
client sends back a single byte indicating which security type is to be used on

the connection:

No. of bytes| Type

[Value] | Description

1 us

security-type

If number-of-security-types zero, then for some reason the connection failed
(e.g. the server cannot support the desired protocol version).ig foiowed

by a string describing the reason (where a string is specified as a letigtteit

by that many ASCII characters):

No. of bytes | Type [Value] | Description
4 u32 reason-length
reason-length| U3 array reason-string

The server closes the connection after sendingeghson-string

Version 3.3 The server decides the security type and sends a single word:

No. of bytes| Type

[Value] | Description

4 U32

security-type

Thesecurity-typanay only take the value 0, 1 or 2. A value of 0 means that the
connection has failed and is followed by a string giving the reason, asloegc

above.

The security types defined in this document are:

Number| Name

0 Invalid

1 None

2 VNC Authentication

Other registered security types are:

6.1 HANDSHAKING MESSAGES 10

Number| Name

5 RA2

6 RA2ne

16 Tight

17 Ultra

18 TLS

19 VeNCrypt

20 GTK-VNC SASL

21 MD5 hash authentication
22 Colin Dean xvp

Once thesecurity-typehas been decided, data specific to thaturity-typefollows
(see section 6.2 for details). At the end of the security handshaking pthasprotocol
normally continues with th8ecurityResulinessage.

Note that after the security handshaking phase, it is possible that fpribtecol data
is over an encrypted or otherwise altered channel.

6.1 HANDSHAKING MESSAGES 11

6.1.3 SecurityResult

The server sends a word to inform the client whether the security hakidghwas

successful.
No. of bytes| Type [Value]| Description
4 U32 status

0 OK

1 failed

If successful, the protocol passes to the initialisation phase (section 6.3).

Version 3.8 onwards If unsuccessful, the server sends a string describing the reason
for the failure, and then closes the connection:

No. of bytes

Type

[Value] | Description

4
reason-length

u32
U8 array

reason-length
reason-string

Version 3.3 and 3.7 If unsuccessful, the server closes the connection.

6.2 SECURITY TYPES

6.2 Security Types

12

6.2 SECURITY TYPES 13
6.2.1 None
No authentication is needed and protocol data is to be sent unencrypted.

Version 3.8 onwards The protocol continues with theecurityResulinessage.

Version 3.3 and 3.7 The protocol passes to the initialisation phase (section 6.3).

6.2 SECURITY TYPES 14

6.2.2 VNC Authentication

VNC authentication is to be used and protocol data is to be sent unencryphbed
server sends a random 16-byte challenge:

No. of bytes| Type [Value]| Description
16 us challenge

The client encrypts the challenge with DES, using a password suppliec: usér as
the key, and sends the resulting 16-byte response:

No. of bytes| Type [Value] | Description
16 us response

The protocol continues with theecurityResulinessage.

6.3 INITIALISATION MESSAGES 15

6.3 Initialisation M essages

Once the client and server are sure that they're happy to talk to onesanting the
agreed security type, the protocol passes to the initialisation phase. Timeseligls a
Clientinit message followed by the server sendirfgeaverinitmessage.

6.3 INITIALISATION MESSAGES 16

6.3.1 Clientlnit

No. of bytes| Type [Value]| Description
1 us shared-flag

Shared-flags non-zero (true) if the server should try to share the desktop by leaving
other clients connected, zero (false) if it should give exclusive adoethis client by
disconnecting all other clients.

6.3 INITIALISATION MESSAGES 17

6.3.2 Serverinit

After receiving theClientinit message, the server sendSexrverlnitmessage. This
tells the client the width and height of the server’s framebuffer, its pixehéd and the
name associated with the desktop:

No. of bytes| Type [Value] | Description

2 Ul6 framebuffer-width
2 Ul6 framebuffer-height
16 Pl XEL_FORVAT server-pixel-format
4 u32 name-length
name-lengthl U8 array name-string

wherePl XEL_FORMAT is

No. of bytes| Type [Value] | Description

1 us bits-per-pixel

1 us depth

1 us big-endian-flag
1 us true-colour-flag
2 Ul6 red-max

2 Ul6 green-max

2 Ul6 blue-max

1 us red-shift

1 us green-shift

1 us blue-shift

3 padding

Server-pixel-formaspecifies the server’'s natural pixel format. This pixel format will
be used unless the client requests a different format using§dtiixelFormamessage
(section 6.4.1).

Bits-per-pixelis the number of bits used for each pixel value on the wire. This must
be greater than or equal to tdepthwhich is the number of useful bits in the pixel
value. Currenthbits-per-pixelmust be 8, 16 or 32 — less than 8-bit pixels are not yet
supportedBig-endian-flags non-zero (true) if multi-byte pixels are interpreted as big
endian. Of course this is meaningless for 8 bits-per-pixel.

If true-colour-flagis non-zero (true) then the last six items specify how to extract the
red, green and blue intensities from the pixel valiRed-maxs the maximum red
value & 2™ — 1 wheren is the number of bits used for red). Note this value is always
in big endian orderRed-shiftis the number of shifts needed to get the red value in a
pixel to the least significant bitGreen-maxgreen-shiftandblue-max blue-shiftare
similar for green and blue. For example, to find the red value (between @dnday
from a given pixel, do the following:

e Swap the pixel value accordinglbig-endian-flage.g. ifbig-endian-flags zero
(false) and host byte order is big endian, then swap).

6.3 INITIALISATION MESSAGES 18

e Shift right byred-shift

e AND with red-max(in host byte order).

If true-colour-flagis zero (false) then the server uses pixel values which are not directly
composed from the red, green and blue intensities, but which serveiessnito a
colour map. Entries in the colour map are set by the server usirgeti@@lourMapEn-
triesmessage (section 6.5.2).

6.4 CLIENT TO SERVER MESSAGES 19

6.4 Client to server messages

The client to server message types defined in this document are:

Number| Name

SetPixelFormat
SetEncodings
FramebufferUpdateRequest
KeyEvent

PointerEvent

ClientCutText

o Uk WNO

Other registered message types are:

Number | Name

255 Anthony Liguori

254,127 VMWare

253 gii

252 tight

251 Pierre Ossman SetDesktopSize
250 Colin Dean xvp

249 OLIVE Call Control

Note that before sending a message not defined in this document a clignhawmas
determined that the server supports the relevant extension by recgirgextension-
specific confirmation from the server.

6.4 CLIENT TO SERVER MESSAGES 20

6.4.1 SetPixelFormat

Sets the format in which pixel values should be serraimebufferUpdatenessages.
If the client does not send@etPixelFormaimessage then the server sends pixel values
in its natural format as specified in tiserverlnitmessage (section 6.3.2).

If true-colour-flagis zero (false) then this indicates that a “colour map” is to be used.
The server can set any of the entries in the colour map usingdt@olourMapEntries
message (section 6.5.2). Immediately after the client has sent this messagtine c
map is empty, even if entries had previously been set by the server.

No. of bytes| Type [Value] | Description

1 us 0 message-type
3 padding

16 Pl XEL_FORVAT pixel-format

wherePl XEL_FORMAT is as described in section 6.3.2:

No. of bytes| Type [Value] | Description

1 us bits-per-pixel

1 us depth

1 us big-endian-flag
1 us true-colour-flag
2 Ul6 red-max

2 Ul6 green-max

2 Ul6 blue-max

1 us red-shift

1 us green-shift

1 us blue-shift

3 padding

6.4 CLIENT TO SERVER MESSAGES 21

6.4.2 SetEncodings

Sets the encoding types in which pixel data can be sent by the servesrddreof the
encoding types given in this message is a hint by the client as to its preggtbrdirst
encoding specified being most preferred). The server may or mayhoose to make
use of this hint. Pixel data may always be sentaw encoding even if not specified
explicitly here.

In addition to genuine encodings, a client can request “pseudo-Eysddo declare
to the server that it supports certain extensions to the protocol. A sehieh does not
support the extension will simply ignore the pseudo-encoding. Note thatniems
the client must assume that the server does not support the extensidgngettiisome
extension-specific confirmation from the server.

See section 6.6 for a description of each encoding and section 6.7 for drengef
pseudo-encodings.

No. of bytes| Type [Value]| Description

1 us 2 message-type

1 padding

2 Ul6 number-of-encodings

followed by number-of-encoding®petitions of the following:

No. of bytes| Type [Value] | Description
4 S32 encoding-type

6.4 CLIENT TO SERVER MESSAGES 22

6.4.3 FramebufferUpdateRequest

Notifies the server that the client is interested in the area of the framelspfeified
by x-position y-position width andheight The server usually responds td-eame-
bufferUpdateRequedty sending aramebufferUpdate Note however that a single
FramebufferUpdatenay be sent in reply to sevefalamebufferUpdateRequsst

The server assumes that the client keeps a copy of all parts of the fifferéb which
it is interested. This means that normally the server only needs to send imtaéme
updates to the client.

However, if for some reason the client has lost the contents of a partarelamhich it
needs, then the client sendsmmebufferUpdateRequestth incrementalket to zero
(false). This requests that the server send the entire contents of tiesparea as
soon as possible. The area will not be updated usin@tm/Recencoding.

If the client has not lost any contents of the area in which it is interested, ithe
sends aFramebufferUpdateRequesith incrementalset to non-zero (true). If and
when there are changes to the specified area of the framebufferytiee wél send a
FramebufferUpdateNote that there may be an indefinite period betweerFthene-
bufferUpdateRequeand theFramebufferUpdate

In the case of a fast client, the client may want to regulate the rate at whiehdss
incrementaFramebufferUpdateRequedb avoid hogging the network.

No. of bytes| Type [Value]| Description

1 us 3 message-type
1 us incremental

2 Ul6 X-position

2 Ul6 y-position

2 Ul6 width

2 Ul6 height

6.4 CLIENT TO SERVER MESSAGES

6.4.4 KeyEvent

23

A key press or releaséDown-flagis non-zero (true) if the key is now pressed, zero
(false) if it is now released. Thkeyitself is specified using the “keysym” values
defined by the X Window System.

No. of bytes| Type [Value] | Description

1 us 4 message-type
1 us down-flag

2 padding

4 u32 key

For most ordinary keys, the “keysym” is the same as the correspondifgl A&lue.
For full details, see The Xlib Reference Manual, published by O’'Reilly &&gates,
or see the header filkeX11/ keysyndef . h> from any X Window System installa-
tion. Some other common keys are:

Keysym value

Key name Keysym value Key name
BackSpace 0xff0O8 F1

Tab 0xff09 F2

Return or Enter] 0xffOd F3

Escape Oxff1b F4

Insert 0xff63

Delete Oxffff F12

Home 0xff50 Shift (left)
End 0xff57 Shift (right)
Page Up 0xff55 Control (left)
Page Down Oxff56 Control (right)
Left Oxff51 Meta (left)
Up 0xff52 Meta (right)
Right 0xff53 Alt (left)
Down 0xff54 Alt (right)

Oxffbe
Oxffbf
OxffcO
Oxffcl
0Oxffc9
Oxffel
Oxffe2
Oxffe3
Oxffed
Oxffe7
Oxffe8
Oxffe9
Oxffea

The interpretation of keysyms is a complex area. In order to be as widelgpateble
as possible the following guidelines should be used:

e The “shift state” (i.e. whether either of the Shift keysyms are down) Ishanly
be used as a hint when interpreting a keysym. For example, on a US kdyboa
the '# character is shifted, but on a UK keyboard it is not. A server with&a
keyboard receiving a '# character from a client with a UK keyboaiti mot
have been sent any shift presses. In this case, it is likely that ther seilve
internally need to “fake” a shift press on its local system, in order to gét a’
character and not, for example, a '3’

e The difference between upper and lower case keysyms is significaf.isTh
unlike some of the keyboard processing in the X Window System which treats
them as the same. For example, a server receiving an uppercaseys§nke

6.4

CLIENT TO SERVER MESSAGES 24

without any shift presses should interpret it as an uppercase 'AirAtis may
involve an internal “fake” shift press.

Servers should ignore “lock” keysyms such as CapsLock and Numwbeke
possible. Instead they should interpret each character-basedkegeprding
to its case.

Unlike Shift, the state of modifier keys such as Control and Alt should bentake
as modifying the interpretation of other keysyms. Note that there are ngrkeys
for ASCII control characters such as ctrl-a - these should be geios view-

ers sending a Control press followed by an ’a’ press.

On a viewer where modifiers like Control and Alt can also be used to genera
character-based keysyms, the viewer may need to send extra “reasds

in order that the keysym is interpreted correctly. For example, on a Gdh@an
keyboard, ctrl-alt-q generates the '@’ character. In this case, thevieseds to
send “fake” release events for Control and Alt in order that the '@rabter is
interpreted correctly (ctrl-alt-@ is likely to mean something completely different
to the server).

There is no universal standard for “backward tab” in the X Windowt&ys
On some systems shift+tab gives the keysym “I&&ht_Tab”, on others it gives

a private “BackTab” keysym and on others it gives “Tab” and apfitica tell
from the shift state that it means backward-tab rather than forwardhtathe
RFB protocol the latter approach is preferred. Viewers should genashifted
Tab rather than ISQeft_Tab. However, to be backwards-compatible with ex-
isting viewers, servers should also recognise ISt_Tab as meaning a shifted
Tab.

6.4 CLIENT TO SERVER MESSAGES 25

6.4.5 Pointer Event

Indicates either pointer movement or a pointer button press or releasgoirter is
now at k-position, y-positiojy and the current state of buttons 1 to 8 are represented
by bits 0 to 7 ofbutton-maskespectively, 0 meaning up, 1 meaning down (pressed).

On a conventional mouse, buttons 1, 2 and 3 correspond to the left, midiikégan
buttons on the mouse. On a wheel mouse, each step of the wheel upweepeeis
sented by a press and release of button 4, and each step downwagesented by
a press and release of button 5.

No. of bytes| Type [Value]| Description

1 us 5 message-type
1 us button-mask
2 Ul6 X-position

2 Ul6 y-position

6.4 CLIENT TO SERVER MESSAGES 26

6.4.6 ClientCutText

The client has new ISO 8859-1 (Latin-1) text in its cut buffer. Ends @fdiare repre-
sented by the linefeed / newline character (value 10) alone. No cameag® (value
13) is needed. There is currently no way to transfer text outside the Lativaracter
set.

No. of bytes| Type [Value] | Description

1 us 6 message-type
3 padding
4 u32 length

length U8 array text

6.5 SERVER TO CLIENT MESSAGES 27

6.5 Server to client messages

The server to client message types defined in this document are:

Number| Name

0 FramebufferUpdate

1 SetColourMapEntries
2 Bell

3 ServerCutText

Other registered message types are:

Number | Name

255 Anthony Liguori
254,127 VMWare

253 gii

252 tight

250 Colin Dean xvp
249 OLIVE Call Control

Note that before sending a message not defined in this document a rserstehave
determined that the client supports the relevant extension by receivimgextension-
specific confirmation from the client - usually a request for a givengsancoding.

6.5 SERVER TO CLIENT MESSAGES 28

6.5.1 FramebufferUpdate

A framebuffer update consists of a sequence of rectangles of pitealutiéch the client
should put into its framebuffer. It is sent in response tramebufferUpdateRequest
from the client. Note that there may be an indefinite period betweeRrdmebuffer-
UpdateRequestnd theFramebufferUpdate

No. of bytes| Type [Value] | Description

1 us 0 message-type

1 padding

2 Ul6 number-of-rectangles

This is followed bynumber-of-rectanglesectangles of pixel data. Each rectangle

consists of:
No. of bytes| Type [Value] | Description
2 Ul6 X-position
2 Ul6 y-position
2 Ul6 width
2 Ul6 height
4 S32 encoding-type

followed by the pixel data in the specified encoding. See section 6.6 footh®f of
the data for each encoding and section 6.7 for the meaning of pseuddisgs.

6.5 SERVER TO CLIENT MESSAGES 29

6.5.2 SetColourMapEntries

When the pixel format uses a “colour map”, this message tells the client thgp¢tae
ified pixel values should be mapped to the given RGB intensities.

No. of bytes| Type [Value]| Description

1 us 1 message-type

1 padding

2 Ul6 first-colour

2 Ul6 number-of-colours

followed by number-of-coloursepetitions of the following:

No. of bytes| Type [Value] | Description
2 Ul6 red

2 Ul6 green

2 Ul6 blue

6.5 SERVER TO CLIENT MESSAGES

6.5.3 Bdl

Ring a bell on the client if it has one.

No. of bytes

Type

[Value]

Description

1

us

2

message-type

30

6.5 SERVER TO CLIENT MESSAGES 31

6.5.4 ServerCutText

The server has new ISO 8859-1 (Latin-1) text in its cut buffer. Erfdénes are
represented by the linefeed / newline character (value 10) alone. iNag=return
(value 13) is needed. There is currently no way to transfer text outsaléatin-1
character set.

No. of bytes| Type [Value] | Description

1 us 3 message-type
3 padding
4 u32 length

length U8 array text

6.6 ENCODINGS

6.6 Encodings

The encodings defined in this document are:

Number| Name

0 Raw

1 CopyRect

2 RRE

5 Hextile

16 ZRLE

-239 Cursor pseudo-encoding
-223 DesktopSizgseudo-encoding

Other registered encodings are:

Number Name

4 CoRRE

6 zlib

7 tight

8 zlibhex

15 TRLE

17 Hitachi ZYWRLE

-1to -222

-224 t0 -238

-240 to -256 tight options

-257 t0 -272 Anthony Liguori

-273 10 -304 VMWare

-305 gii

-306 popa

-307 Peter Astrand DesktopName

-308 Pierre Ossman ExtendedDesktopSize
-309 Colin Dean xvp

-310 OLIVE Call Control

-412 to -512 TurboVNC fine-grained quality level
-763t0 -768 TurboVNC subsampling level

0x574d5600 to 0x574d56ff VMWare

32

6.6 ENCODINGS 33

6.6.1 Raw encoding

The simplest encoding type is raw pixel data. In this case the data consisigtéfx
height pixel values (Wherevidth andheight are the width and height of the rectan-
gle). The values simply represent each pixel in left-to-right scanlinerorélll RFB
clients must be able to cope with pixel data in this raw encoding, and RFBrserve
should only produce raw encoding unless the client specifically asksofoe other
encoding type.

No. of bytes Type [Value] | Description
width x height x bytesPerPixel | Pl XEL array pixels

6.6 ENCODINGS 34

6.6.2 CopyRect encoding

TheCopyRec{copy rectangle) encoding is a very simple and efficient encoding which
can be used when the client already has the same pixel data elsewhergamis f
buffer. The encoding on the wire simply consists of an X,Y coordinate. Jikies a
position in the framebuffer from which the client can copy the rectanglexel gata.
This can be used in a variety of situations, the most obvious of which ane thbeiser
moves a window across the screen, and when the contents of a windearalied.

A less obvious use is for optimising drawing of text or other repeating pattekn
intelligent server may be able to send a pattern explicitly only once, and kgdtwn
previous position of the pattern in the framebuffer, send subsequemtrences of the
same pattern using ti@opyRecencoding.

No. of bytes| Type [Value]| Description
2 Ul6 Src-x-position
2 Ul6 src-y-position

6.6 ENCODINGS 35

6.6.3 RRE encoding

RRE stands forise-and-run-length encodingnd as its name implies, it is essentially
a two-dimensional analogue of run-length encoding. RRE-encod&thiges arrive at
the client in a form which can be rendered immediately and efficiently by the siinple
of graphics engines. RRE is not appropriate for complex desktopsabube useful

in some situations.

The basic idea behind RRE is the partitioning of a rectangle of pixel data ioto re
angular subregions (subrectangles) each of which consists of pixalsiogle value
and the union of which comprises the original rectangular region. Theaminal
partition of a given rectangle into such subrectangles is relatively eagynpute.

The encoding consists of a background pixel valg(typically the most prevalent
pixel value in the rectangle) and a couvit followed by a list of V subrectangles, each

of which consists of a tuple v, x, y, w, h > wherev (# V}) is the pixel value(zx, y)

are the coordinates of the subrectangle relative to the top-left corribe oéctangle,

and (w, h) are the width and height of the subrectangle. The client can render the
original rectangle by drawing a filled rectangle of the background pixieievzand then
drawing a filled rectangle corresponding to each subrectangle.

On the wire, the data begins with the header:

No. of bytes Type [Value] | Description
4 u32 number-of-subrectangles
bytesPerPizel | Pl XEL background-pixel-value

This is followed bynumber-of-subrectanglesstances of the following structure:

No. of bytes Type [Value] | Description
bytesPer Pixel | Pl XEL subrect-pixel-value
2 ul6 X-position

2 Ul6 y-position

2 ul6 width

2 Ul6 height

6.6 ENCODINGS 36

6.6.4 Hextileencoding

Hextile is a variation on the RRE idea. Rectangles are split up into 16k al-
lowing the dimensions of the subrectangles to be specified in 4 bits each, 18 bits
total. The rectangle is split into tiles starting at the top left going in left-to-right, top
to-bottom order. The encoded contents of the tiles simply follow one anottikein
predetermined order. If the width of the whole rectangle is not an exact heultii6
then the width of the last tile in each row will be correspondingly smaller. Similarly if
the height of the whole rectangle is not an exact multiple of 16 then the hdighth

tile in the final row will also be smaller.

Each tile is either encoded as raw pixel data, or as a variation on RRE tileabhs

a background pixel value, as before. The background pixel valas dot need to be
explicitly specified for a given tile if it is the same as the background of theique
tile. However the background pixel value may not be carried over if theigus tile
wasRaw. If all of the subrectangles of a tile have the same pixel value, this can be
specified once as a foreground pixel value for the whole tile. As with thiegsaund,
the foreground pixel value can be left unspecified, meaning it is caokiedfrom the
previous tile. The foreground pixel value may not be carried over if tegipus tile
had theRaw or SubrectsColouredits set. It may, however, be carried over from a
previous tile with theAnySubrectsbit clear, as long as that tile itself carried over a
valid foreground from its previous tile.

So the data consists of each tile encoded in order. Each tile begins siitteacoding
type byte, which is a mask made up of a number of bits:

No. of bytes| Type [Value]| Description

1 us subencoding-mask
Raw
BackgroundSpecified
ForegroundSpecified
AnySubrects

6 SubrectsColoured

oo A~ADNPE

=

If the Raw bit is set then the other bits are irrelevantidth x height pixel values
follow (wherewidth andheight are the width and height of the tile). Otherwise the
other bits in the mask are as follows:

BackgroundSpecified if set, a pixel value follows which specifies the background
colour for this tile:

No. of bytes Type [Value] | Description
bytesPerPixel | Pl XEL background-pixel-value

The first non-raw tile in a rectangle must have this bit set. If this bit isn'thesi
the background is the same as the last tile.

ForegroundSpecified if set, a pixel value follows which specifies the foreground
colour to be used for all subrectangles in this tile:

6.6 ENCODINGS 37

No. of bytes Type [Value] | Description
bytesPer Pizel | Pl XEL foreground-pixel-value

If this bit is set then the SubrectsColoured bit must be zero.

AnySubrects- if set, a single byte follows giving the number of subrectangles fol-
lowing:

No. of bytes| Type [Value]| Description
1 us number-of-subrectangles

If not set, there are no subrectangles (i.e. the whole tile is just solid baokdr
colour).

SubrectsColoured if set then each subrectangle is preceded by a pixel value giving
the colour of that subrectangle, so a subrectangle is:

No. of bytes Type [Value] | Description
bytesPer Pixel | Pl XEL subrect-pixel-value
1 us x-and-y-position

1 us width-and-height

If not set, all subrectangles are the same colour, the foregroundrgdfidie
ForegroundSpecified bit wasn't set then the foreground is the sarthe dast
tile. A subrectangle is:

No. of bytes| Type [Value]| Description
1 us x-and-y-position
1 us width-and-height

The position and size of each subrectangle is specified in two bytasi-y-position
andwidth-and-height The most-significant four bits ofand-y-positiorspecify the X
position, the least-significant specify the Y position. The most-significanthids of
width-and-heighspecify the width minus one, the least-significant specify the height
minus one.

6.6 ENCODINGS 38

6.6.5 ZRLE encoding

ZRLE stands for ZIib Run-Length Encoding, and combines zlib compression, tiling,
palettisation and run-length encoding. On the wire, the rectangle begins Wittyie
length field, and is followed by that many bytes of zlib-compressed data.glesatib
“stream” object is used for a given RFB protocol connection, so thatEZRctangles
must be encoded and decoded strictly in order.

No. of bytes| Type [Value] | Description
4 U32 length
length U8 array zlibData

The zlibData when uncompressed represents tiles of 64x64 pixels in left-to-right,
top-to-bottom order, similar to hextile. If the width of the rectangle is not arctexa
multiple of 64 then the width of the last tile in each row is smaller, and if the height of
the rectangle is not an exact multiple of 64 then the height of each tile in thedinal

is smaller.

ZRLE makes use of a new ty&Pl XEL (compressed pixel). This is the same as a
Pl XEL for the agreed pixel format, except wherae-colour-flagis non-zero bits-
per-pixelis 32, depthis 24 or less and all of the bits making up the red, green and
blue intensities fit in either the least significant 3 bytes or the most signifidayie3.

In this case &Pl XEL is only 3 bytes long, and contains the least significant or the
most significant 3 bytes as appropriabgtesPerC Pizel is the number of bytes in a
CPI XEL.

Each tile begins with aubencoding type byte. The top bit of this byte is set if the tile
has been run-length encoded, clear otherwise. The bottom seven hitgénithe size
of the palette used - zero means no palette, one means that the tile is of a singie co
210 127 indicate a palette of that size. The possible valuesigfcoding are:

0 - Raw pixel data.width x height pixel values follow (wherevidth andheight
are the width and height of the tile):

No. of bytes Type [Value] | Description
width x height x bytesPerC Pixel | CPl XEL array pizels

1 - A solid tile consisting of a single colour. The pixel value follows:

No. of bytes Type [Value] | Description
bytesPerC Pixel | CPl XEL pizelValue

2 to 16- Packed palette types. Followed by the palette, consistipgletieSize(=
subencoding) pixel values. Then the packed pixels follow, each pixel repre-
sented as a bit field yielding an index into the palette (0 meaning the first palette

see http://www.gzip.org/zlib/

6.6 ENCODINGS 39

entry). ForpaletteSize 2, a 1-bit field is used, fopaletteSize 3 or 4 a 2-bit

field is used and fopaletteSize from 5 to 16 a 4-bit field is used. The bit fields
are packed into bytes, the most significant bits representing the leftmost pixe
(i.e. big endian). For tiles not a multiple of 8, 4 or 2 pixels wide (as appropri-
ate), padding bits are used to aligach rowto an exact number of bytes.

No. of bytes Type [Value] | Description
paletteSize x bytesPerC Pixel | CPl XEL array palette
m U8 array packedPixels

wherem is the number of bytes representing the packed pixelspdietieSize
of 2 this is floor((width + 7)/8) x height, for paletteSize of 3 or 4 this is
floor((width+3)/4) x height, for paletteSize of 5 to 16 this isfloor ((width+
1)/2) x height.

17 to 127- unused (no advantage over palette RLE).

128- Plain RLE. Consists of a number of runs, repeated until the tile is dones Run
may continue from the end of one row to the beginning of the next. Each run
is a represented by a single pixel value followed by the length of the rua. Th
length is represented as one or more bytes. The length is calculated asrene mo
than the sum of all the bytes representing the length. Any byte value otimer tha
255 indicates the final byte. So for example length 1 is represented &5H],
as [254], 256 as [255,0], 257 as [255,1], 510 as [255,254], 512555255,0]

and so on.
No. of bytes Type [Value] | Description
bytesPerC Pixel CPI XEL pizelValue
floor((runLength —1)/255) | U3 array 255
1 us (runLength — 1)%255
129- unused

130 to 255- Palette RLE. Followed by the palette, consistingpafetteSize =
(subencoding — 128) pixel values:

No. of bytes Type [Value] | Description
paletteSize x bytesPerC Pixel | CPl XEL array palette

Then as with plain RLE, consists of a number of runs, repeated until the tile is
done. A run of length one is represented simply by a palette index:

No. of bytes| Type [Value]| Description
1 us paletteIndex

6.6 ENCODINGS

40

A run of length more than one is represented by a palette index with the top bit
set, followed by the length of the run as for plain RLE.

No. of bytes Type [Value] | Description

1 us paletteIndex + 128
floor((runLength —1)/255) | U8 array 255

1 us (runLength — 1)%255

6.7 PSEUDO-ENCODINGS

6.7 Pseudo-encodings

41

6.7 PSEUDO-ENCODINGS 42

6.7.1 Cursor pseudo-encoding

A client which requests th€ursor pseudo-encoding is declaring that it is capable of
drawing a mouse cursor locally. This can significantly improve perceieedpnance
over slow links. The server sets the cursor shape by sending a pestidngle with

the Cursor pseudo-encoding as part of an update. The pseudo-rectargiesition
andy-positionindicate the hotspot of the cursor, amidth and heightindicate the
width and height of the cursor in pixels. The data consistaffth x height pixel
values followed by a bitmask. The bitmask consists of left-to-right, top-to-tyotto
scanlines, where each scanline is padded to a whole number of fdytes(width +
7)/8). Within each byte the most significant bit represents the leftmost pixel, with a
1-bit meaning the corresponding pixel in the cursor is valid.

No. of bytes Type [Value] | Description
width x height x bytesPerPixel | Pl XEL array cursor-pixels
floor((width + 7)/8) * height U8 array bitmask

6.7 PSEUDO-ENCODINGS 43

6.7.2 DesktopSize pseudo-encoding

A client which requests thBesktopSizpseudo-encoding is declaring that it is capable
of coping with a change in the framebuffer width and/or height. The setvanges
the desktop size by sending a pseudo-rectangle witbdsktopSizeseudo-encoding
as the last rectangle in an update. The pseudo-rectamgpeisitionandy-positionare
ignored, andvidth andheightindicate the new width and height of the framebuffer.
There is no further data associated with the pseudo-rectangle.

