You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1340 lines
37 KiB
Go
1340 lines
37 KiB
Go
package stdlib
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"sort"
|
|
|
|
"github.com/zclconf/go-cty/cty"
|
|
"github.com/zclconf/go-cty/cty/convert"
|
|
"github.com/zclconf/go-cty/cty/function"
|
|
"github.com/zclconf/go-cty/cty/gocty"
|
|
)
|
|
|
|
var HasIndexFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "collection",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowDynamicType: true,
|
|
},
|
|
{
|
|
Name: "key",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowDynamicType: true,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
collTy := args[0].Type()
|
|
if !(collTy.IsTupleType() || collTy.IsListType() || collTy.IsMapType() || collTy == cty.DynamicPseudoType) {
|
|
return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple")
|
|
}
|
|
return cty.Bool, nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
return args[0].HasIndex(args[1]), nil
|
|
},
|
|
})
|
|
|
|
var IndexFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "collection",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
{
|
|
Name: "key",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowDynamicType: true,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
collTy := args[0].Type()
|
|
key := args[1]
|
|
keyTy := key.Type()
|
|
switch {
|
|
case collTy.IsTupleType():
|
|
if keyTy != cty.Number && keyTy != cty.DynamicPseudoType {
|
|
return cty.NilType, fmt.Errorf("key for tuple must be number")
|
|
}
|
|
if !key.IsKnown() {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
var idx int
|
|
err := gocty.FromCtyValue(key, &idx)
|
|
if err != nil {
|
|
return cty.NilType, fmt.Errorf("invalid key for tuple: %s", err)
|
|
}
|
|
|
|
etys := collTy.TupleElementTypes()
|
|
|
|
if idx >= len(etys) || idx < 0 {
|
|
return cty.NilType, fmt.Errorf("key must be between 0 and %d inclusive", len(etys))
|
|
}
|
|
|
|
return etys[idx], nil
|
|
|
|
case collTy.IsListType():
|
|
if keyTy != cty.Number && keyTy != cty.DynamicPseudoType {
|
|
return cty.NilType, fmt.Errorf("key for list must be number")
|
|
}
|
|
|
|
return collTy.ElementType(), nil
|
|
|
|
case collTy.IsMapType():
|
|
if keyTy != cty.String && keyTy != cty.DynamicPseudoType {
|
|
return cty.NilType, fmt.Errorf("key for map must be string")
|
|
}
|
|
|
|
return collTy.ElementType(), nil
|
|
|
|
default:
|
|
return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple")
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
has, err := HasIndex(args[0], args[1])
|
|
if err != nil {
|
|
return cty.NilVal, err
|
|
}
|
|
if has.False() { // safe because collection and key are guaranteed known here
|
|
return cty.NilVal, fmt.Errorf("invalid index")
|
|
}
|
|
|
|
return args[0].Index(args[1]), nil
|
|
},
|
|
})
|
|
|
|
var LengthFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "collection",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowDynamicType: true,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
collTy := args[0].Type()
|
|
if !(collTy.IsTupleType() || collTy.IsListType() || collTy.IsMapType() || collTy.IsSetType() || collTy == cty.DynamicPseudoType) {
|
|
return cty.NilType, fmt.Errorf("collection must be a list, a map or a tuple")
|
|
}
|
|
return cty.Number, nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
return args[0].Length(), nil
|
|
},
|
|
})
|
|
|
|
var ElementFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
{
|
|
Name: "index",
|
|
Type: cty.Number,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
list := args[0]
|
|
index := args[1]
|
|
if index.IsKnown() {
|
|
if index.LessThan(cty.NumberIntVal(0)).True() {
|
|
return cty.DynamicPseudoType, fmt.Errorf("cannot use element function with a negative index")
|
|
}
|
|
}
|
|
|
|
listTy := list.Type()
|
|
switch {
|
|
case listTy.IsListType():
|
|
return listTy.ElementType(), nil
|
|
case listTy.IsTupleType():
|
|
if !args[1].IsKnown() {
|
|
// If the index isn't known yet then we can't predict the
|
|
// result type since each tuple element can have its own type.
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
etys := listTy.TupleElementTypes()
|
|
var index int
|
|
err := gocty.FromCtyValue(args[1], &index)
|
|
if err != nil {
|
|
// e.g. fractional number where whole number is required
|
|
return cty.DynamicPseudoType, fmt.Errorf("invalid index: %s", err)
|
|
}
|
|
if len(etys) == 0 {
|
|
return cty.DynamicPseudoType, errors.New("cannot use element function with an empty list")
|
|
}
|
|
index = index % len(etys)
|
|
return etys[index], nil
|
|
default:
|
|
return cty.DynamicPseudoType, fmt.Errorf("cannot read elements from %s", listTy.FriendlyName())
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
|
|
var index int
|
|
err := gocty.FromCtyValue(args[1], &index)
|
|
if err != nil {
|
|
// can't happen because we checked this in the Type function above
|
|
return cty.DynamicVal, fmt.Errorf("invalid index: %s", err)
|
|
}
|
|
|
|
if args[1].LessThan(cty.NumberIntVal(0)).True() {
|
|
return cty.DynamicVal, fmt.Errorf("cannot use element function with a negative index")
|
|
}
|
|
|
|
if !args[0].IsKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
l := args[0].LengthInt()
|
|
if l == 0 {
|
|
return cty.DynamicVal, errors.New("cannot use element function with an empty list")
|
|
}
|
|
index = index % l
|
|
|
|
// We did all the necessary type checks in the type function above,
|
|
// so this is guaranteed not to fail.
|
|
return args[0].Index(cty.NumberIntVal(int64(index))), nil
|
|
},
|
|
})
|
|
|
|
// CoalesceListFunc is a function that takes any number of list arguments
|
|
// and returns the first one that isn't empty.
|
|
var CoalesceListFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{},
|
|
VarParam: &function.Parameter{
|
|
Name: "vals",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowUnknown: true,
|
|
AllowDynamicType: true,
|
|
AllowNull: true,
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
if len(args) == 0 {
|
|
return cty.NilType, errors.New("at least one argument is required")
|
|
}
|
|
|
|
argTypes := make([]cty.Type, len(args))
|
|
|
|
for i, arg := range args {
|
|
// if any argument is unknown, we can't be certain know which type we will return
|
|
if !arg.IsKnown() {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
ty := arg.Type()
|
|
|
|
if !ty.IsListType() && !ty.IsTupleType() {
|
|
return cty.NilType, errors.New("coalescelist arguments must be lists or tuples")
|
|
}
|
|
|
|
argTypes[i] = arg.Type()
|
|
}
|
|
|
|
last := argTypes[0]
|
|
// If there are mixed types, we have to return a dynamic type.
|
|
for _, next := range argTypes[1:] {
|
|
if !next.Equals(last) {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
}
|
|
|
|
return last, nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
for _, arg := range args {
|
|
if !arg.IsKnown() {
|
|
// If we run into an unknown list at some point, we can't
|
|
// predict the final result yet. (If there's a known, non-empty
|
|
// arg before this then we won't get here.)
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
if arg.IsNull() {
|
|
continue
|
|
}
|
|
|
|
if arg.LengthInt() > 0 {
|
|
return arg, nil
|
|
}
|
|
}
|
|
|
|
return cty.NilVal, errors.New("no non-null arguments")
|
|
},
|
|
})
|
|
|
|
// CompactFunc is a function that takes a list of strings and returns a new list
|
|
// with any empty string elements removed.
|
|
var CompactFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.List(cty.String),
|
|
},
|
|
},
|
|
Type: function.StaticReturnType(cty.List(cty.String)),
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
listVal := args[0]
|
|
if !listVal.IsWhollyKnown() {
|
|
// If some of the element values aren't known yet then we
|
|
// can't yet return a compacted list
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
var outputList []cty.Value
|
|
|
|
for it := listVal.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
if v.IsNull() || v.AsString() == "" {
|
|
continue
|
|
}
|
|
outputList = append(outputList, v)
|
|
}
|
|
|
|
if len(outputList) == 0 {
|
|
return cty.ListValEmpty(cty.String), nil
|
|
}
|
|
|
|
return cty.ListVal(outputList), nil
|
|
},
|
|
})
|
|
|
|
// ContainsFunc is a function that determines whether a given list or
|
|
// set contains a given single value as one of its elements.
|
|
var ContainsFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
{
|
|
Name: "value",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: function.StaticReturnType(cty.Bool),
|
|
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
|
|
arg := args[0]
|
|
ty := arg.Type()
|
|
|
|
if !ty.IsListType() && !ty.IsTupleType() && !ty.IsSetType() {
|
|
return cty.NilVal, errors.New("argument must be list, tuple, or set")
|
|
}
|
|
|
|
if args[0].IsNull() {
|
|
return cty.NilVal, errors.New("cannot search a nil list or set")
|
|
}
|
|
|
|
if args[0].LengthInt() == 0 {
|
|
return cty.False, nil
|
|
}
|
|
|
|
if !args[0].IsKnown() || !args[1].IsKnown() {
|
|
return cty.UnknownVal(cty.Bool), nil
|
|
}
|
|
|
|
containsUnknown := false
|
|
for it := args[0].ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
eq := args[1].Equals(v)
|
|
if !eq.IsKnown() {
|
|
// We may have an unknown value which could match later, but we
|
|
// first need to continue checking all values for an exact
|
|
// match.
|
|
containsUnknown = true
|
|
continue
|
|
}
|
|
if eq.True() {
|
|
return cty.True, nil
|
|
}
|
|
}
|
|
|
|
if containsUnknown {
|
|
return cty.UnknownVal(cty.Bool), nil
|
|
}
|
|
|
|
return cty.False, nil
|
|
},
|
|
})
|
|
|
|
// DistinctFunc is a function that takes a list and returns a new list
|
|
// with any duplicate elements removed.
|
|
var DistinctFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.List(cty.DynamicPseudoType),
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
return args[0].Type(), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
listVal := args[0]
|
|
|
|
if !listVal.IsWhollyKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
var list []cty.Value
|
|
|
|
for it := listVal.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
list, err = appendIfMissing(list, v)
|
|
if err != nil {
|
|
return cty.NilVal, err
|
|
}
|
|
}
|
|
|
|
if len(list) == 0 {
|
|
return cty.ListValEmpty(retType.ElementType()), nil
|
|
}
|
|
return cty.ListVal(list), nil
|
|
},
|
|
})
|
|
|
|
// ChunklistFunc is a function that splits a single list into fixed-size chunks,
|
|
// returning a list of lists.
|
|
var ChunklistFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.List(cty.DynamicPseudoType),
|
|
},
|
|
{
|
|
Name: "size",
|
|
Type: cty.Number,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
return cty.List(args[0].Type()), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
listVal := args[0]
|
|
if !listVal.IsKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
if listVal.LengthInt() == 0 {
|
|
return cty.ListValEmpty(listVal.Type()), nil
|
|
}
|
|
|
|
var size int
|
|
err = gocty.FromCtyValue(args[1], &size)
|
|
if err != nil {
|
|
return cty.NilVal, fmt.Errorf("invalid index: %s", err)
|
|
}
|
|
|
|
if size < 0 {
|
|
return cty.NilVal, errors.New("the size argument must be positive")
|
|
}
|
|
|
|
output := make([]cty.Value, 0)
|
|
|
|
// if size is 0, returns a list made of the initial list
|
|
if size == 0 {
|
|
output = append(output, listVal)
|
|
return cty.ListVal(output), nil
|
|
}
|
|
|
|
chunk := make([]cty.Value, 0)
|
|
|
|
l := args[0].LengthInt()
|
|
i := 0
|
|
|
|
for it := listVal.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
chunk = append(chunk, v)
|
|
|
|
// Chunk when index isn't 0, or when reaching the values's length
|
|
if (i+1)%size == 0 || (i+1) == l {
|
|
output = append(output, cty.ListVal(chunk))
|
|
chunk = make([]cty.Value, 0)
|
|
}
|
|
i++
|
|
}
|
|
|
|
return cty.ListVal(output), nil
|
|
},
|
|
})
|
|
|
|
// FlattenFunc is a function that takes a list and replaces any elements
|
|
// that are lists with a flattened sequence of the list contents.
|
|
var FlattenFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
if !args[0].IsWhollyKnown() {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
argTy := args[0].Type()
|
|
if !argTy.IsListType() && !argTy.IsSetType() && !argTy.IsTupleType() {
|
|
return cty.NilType, errors.New("can only flatten lists, sets and tuples")
|
|
}
|
|
|
|
retVal, known := flattener(args[0])
|
|
if !known {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
tys := make([]cty.Type, len(retVal))
|
|
for i, ty := range retVal {
|
|
tys[i] = ty.Type()
|
|
}
|
|
return cty.Tuple(tys), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
inputList := args[0]
|
|
if inputList.LengthInt() == 0 {
|
|
return cty.EmptyTupleVal, nil
|
|
}
|
|
|
|
out, known := flattener(inputList)
|
|
if !known {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
return cty.TupleVal(out), nil
|
|
},
|
|
})
|
|
|
|
// Flatten until it's not a cty.List, and return whether the value is known.
|
|
// We can flatten lists with unknown values, as long as they are not
|
|
// lists themselves.
|
|
func flattener(flattenList cty.Value) ([]cty.Value, bool) {
|
|
if !flattenList.Length().IsKnown() {
|
|
// If we don't know the length of what we're flattening then we can't
|
|
// predict the length of our result yet either.
|
|
return nil, false
|
|
}
|
|
out := make([]cty.Value, 0)
|
|
for it := flattenList.ElementIterator(); it.Next(); {
|
|
_, val := it.Element()
|
|
if val.Type().IsListType() || val.Type().IsSetType() || val.Type().IsTupleType() {
|
|
if !val.IsKnown() {
|
|
return out, false
|
|
}
|
|
|
|
res, known := flattener(val)
|
|
if !known {
|
|
return res, known
|
|
}
|
|
out = append(out, res...)
|
|
} else {
|
|
out = append(out, val)
|
|
}
|
|
}
|
|
return out, true
|
|
}
|
|
|
|
// KeysFunc is a function that takes a map and returns a sorted list of the map keys.
|
|
var KeysFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "inputMap",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowUnknown: true,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
ty := args[0].Type()
|
|
switch {
|
|
case ty.IsMapType():
|
|
return cty.List(cty.String), nil
|
|
case ty.IsObjectType():
|
|
atys := ty.AttributeTypes()
|
|
if len(atys) == 0 {
|
|
return cty.EmptyTuple, nil
|
|
}
|
|
// All of our result elements will be strings, and atys just
|
|
// decides how many there are.
|
|
etys := make([]cty.Type, len(atys))
|
|
for i := range etys {
|
|
etys[i] = cty.String
|
|
}
|
|
return cty.Tuple(etys), nil
|
|
default:
|
|
return cty.DynamicPseudoType, function.NewArgErrorf(0, "must have map or object type")
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
|
|
m := args[0]
|
|
var keys []cty.Value
|
|
|
|
switch {
|
|
case m.Type().IsObjectType():
|
|
// In this case we allow unknown values so we must work only with
|
|
// the attribute _types_, not with the value itself.
|
|
var names []string
|
|
for name := range m.Type().AttributeTypes() {
|
|
names = append(names, name)
|
|
}
|
|
sort.Strings(names) // same ordering guaranteed by cty's ElementIterator
|
|
if len(names) == 0 {
|
|
return cty.EmptyTupleVal, nil
|
|
}
|
|
keys = make([]cty.Value, len(names))
|
|
for i, name := range names {
|
|
keys[i] = cty.StringVal(name)
|
|
}
|
|
return cty.TupleVal(keys), nil
|
|
default:
|
|
if !m.IsKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
// cty guarantees that ElementIterator will iterate in lexicographical
|
|
// order by key.
|
|
for it := args[0].ElementIterator(); it.Next(); {
|
|
k, _ := it.Element()
|
|
keys = append(keys, k)
|
|
}
|
|
if len(keys) == 0 {
|
|
return cty.ListValEmpty(cty.String), nil
|
|
}
|
|
return cty.ListVal(keys), nil
|
|
}
|
|
},
|
|
})
|
|
|
|
// LookupFunc is a function that performs dynamic lookups of map types.
|
|
var LookupFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "inputMap",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
{
|
|
Name: "key",
|
|
Type: cty.String,
|
|
},
|
|
{
|
|
Name: "default",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
ty := args[0].Type()
|
|
|
|
switch {
|
|
case ty.IsObjectType():
|
|
if !args[1].IsKnown() {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
key := args[1].AsString()
|
|
if ty.HasAttribute(key) {
|
|
return args[0].GetAttr(key).Type(), nil
|
|
} else if len(args) == 3 {
|
|
// if the key isn't found but a default is provided,
|
|
// return the default type
|
|
return args[2].Type(), nil
|
|
}
|
|
return cty.DynamicPseudoType, function.NewArgErrorf(0, "the given object has no attribute %q", key)
|
|
case ty.IsMapType():
|
|
if len(args) == 3 {
|
|
_, err = convert.Convert(args[2], ty.ElementType())
|
|
if err != nil {
|
|
return cty.NilType, function.NewArgErrorf(2, "the default value must have the same type as the map elements")
|
|
}
|
|
}
|
|
return ty.ElementType(), nil
|
|
default:
|
|
return cty.NilType, function.NewArgErrorf(0, "lookup() requires a map as the first argument")
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
defaultVal := args[2]
|
|
|
|
mapVar := args[0]
|
|
lookupKey := args[1].AsString()
|
|
|
|
if !mapVar.IsWhollyKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
if mapVar.Type().IsObjectType() {
|
|
if mapVar.Type().HasAttribute(lookupKey) {
|
|
return mapVar.GetAttr(lookupKey), nil
|
|
}
|
|
} else if mapVar.HasIndex(cty.StringVal(lookupKey)) == cty.True {
|
|
return mapVar.Index(cty.StringVal(lookupKey)), nil
|
|
}
|
|
|
|
defaultVal, err = convert.Convert(defaultVal, retType)
|
|
if err != nil {
|
|
return cty.NilVal, err
|
|
}
|
|
return defaultVal, nil
|
|
},
|
|
})
|
|
|
|
// MergeFunc constructs a function that takes an arbitrary number of maps or
|
|
// objects, and returns a single value that contains a merged set of keys and
|
|
// values from all of the inputs.
|
|
//
|
|
// If more than one given map or object defines the same key then the one that
|
|
// is later in the argument sequence takes precedence.
|
|
var MergeFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{},
|
|
VarParam: &function.Parameter{
|
|
Name: "maps",
|
|
Type: cty.DynamicPseudoType,
|
|
AllowDynamicType: true,
|
|
AllowNull: true,
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
// empty args is accepted, so assume an empty object since we have no
|
|
// key-value types.
|
|
if len(args) == 0 {
|
|
return cty.EmptyObject, nil
|
|
}
|
|
|
|
// collect the possible object attrs
|
|
attrs := map[string]cty.Type{}
|
|
|
|
first := cty.NilType
|
|
matching := true
|
|
attrsKnown := true
|
|
for i, arg := range args {
|
|
ty := arg.Type()
|
|
// any dynamic args mean we can't compute a type
|
|
if ty.Equals(cty.DynamicPseudoType) {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
// check for invalid arguments
|
|
if !ty.IsMapType() && !ty.IsObjectType() {
|
|
return cty.NilType, fmt.Errorf("arguments must be maps or objects, got %#v", ty.FriendlyName())
|
|
}
|
|
|
|
switch {
|
|
case ty.IsObjectType() && !arg.IsNull():
|
|
for attr, aty := range ty.AttributeTypes() {
|
|
attrs[attr] = aty
|
|
}
|
|
case ty.IsMapType():
|
|
switch {
|
|
case arg.IsNull():
|
|
// pass, nothing to add
|
|
case arg.IsKnown():
|
|
ety := arg.Type().ElementType()
|
|
for it := arg.ElementIterator(); it.Next(); {
|
|
attr, _ := it.Element()
|
|
attrs[attr.AsString()] = ety
|
|
}
|
|
default:
|
|
// any unknown maps means we don't know all possible attrs
|
|
// for the return type
|
|
attrsKnown = false
|
|
}
|
|
}
|
|
|
|
// record the first argument type for comparison
|
|
if i == 0 {
|
|
first = arg.Type()
|
|
continue
|
|
}
|
|
|
|
if !ty.Equals(first) && matching {
|
|
matching = false
|
|
}
|
|
}
|
|
|
|
// the types all match, so use the first argument type
|
|
if matching {
|
|
return first, nil
|
|
}
|
|
|
|
// We had a mix of unknown maps and objects, so we can't predict the
|
|
// attributes
|
|
if !attrsKnown {
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
return cty.Object(attrs), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
outputMap := make(map[string]cty.Value)
|
|
|
|
for _, arg := range args {
|
|
if arg.IsNull() {
|
|
continue
|
|
}
|
|
for it := arg.ElementIterator(); it.Next(); {
|
|
k, v := it.Element()
|
|
outputMap[k.AsString()] = v
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case retType.IsMapType():
|
|
if len(outputMap) == 0 {
|
|
return cty.MapValEmpty(retType.ElementType()), nil
|
|
}
|
|
return cty.MapVal(outputMap), nil
|
|
case retType.IsObjectType(), retType.Equals(cty.DynamicPseudoType):
|
|
return cty.ObjectVal(outputMap), nil
|
|
default:
|
|
panic(fmt.Sprintf("unexpected return type: %#v", retType))
|
|
}
|
|
},
|
|
})
|
|
|
|
// ReverseListFunc takes a sequence and produces a new sequence of the same length
|
|
// with all of the same elements as the given sequence but in reverse order.
|
|
var ReverseListFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
argTy := args[0].Type()
|
|
switch {
|
|
case argTy.IsTupleType():
|
|
argTys := argTy.TupleElementTypes()
|
|
retTys := make([]cty.Type, len(argTys))
|
|
for i, ty := range argTys {
|
|
retTys[len(retTys)-i-1] = ty
|
|
}
|
|
return cty.Tuple(retTys), nil
|
|
case argTy.IsListType(), argTy.IsSetType(): // We accept sets here to mimic the usual behavior of auto-converting to list
|
|
return cty.List(argTy.ElementType()), nil
|
|
default:
|
|
return cty.NilType, function.NewArgErrorf(0, "can only reverse list or tuple values, not %s", argTy.FriendlyName())
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
in := args[0].AsValueSlice()
|
|
outVals := make([]cty.Value, len(in))
|
|
for i, v := range in {
|
|
outVals[len(outVals)-i-1] = v
|
|
}
|
|
switch {
|
|
case retType.IsTupleType():
|
|
return cty.TupleVal(outVals), nil
|
|
default:
|
|
if len(outVals) == 0 {
|
|
return cty.ListValEmpty(retType.ElementType()), nil
|
|
}
|
|
return cty.ListVal(outVals), nil
|
|
}
|
|
},
|
|
})
|
|
|
|
// SetProductFunc calculates the Cartesian product of two or more sets or
|
|
// sequences. If the arguments are all lists then the result is a list of tuples,
|
|
// preserving the ordering of all of the input lists. Otherwise the result is a
|
|
// set of tuples.
|
|
var SetProductFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{},
|
|
VarParam: &function.Parameter{
|
|
Name: "sets",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
Type: func(args []cty.Value) (retType cty.Type, err error) {
|
|
if len(args) < 2 {
|
|
return cty.NilType, errors.New("at least two arguments are required")
|
|
}
|
|
|
|
listCount := 0
|
|
elemTys := make([]cty.Type, len(args))
|
|
for i, arg := range args {
|
|
aty := arg.Type()
|
|
switch {
|
|
case aty.IsSetType():
|
|
elemTys[i] = aty.ElementType()
|
|
case aty.IsListType():
|
|
elemTys[i] = aty.ElementType()
|
|
listCount++
|
|
case aty.IsTupleType():
|
|
// We can accept a tuple type only if there's some common type
|
|
// that all of its elements can be converted to.
|
|
allEtys := aty.TupleElementTypes()
|
|
if len(allEtys) == 0 {
|
|
elemTys[i] = cty.DynamicPseudoType
|
|
listCount++
|
|
break
|
|
}
|
|
ety, _ := convert.UnifyUnsafe(allEtys)
|
|
if ety == cty.NilType {
|
|
return cty.NilType, function.NewArgErrorf(i, "all elements must be of the same type")
|
|
}
|
|
elemTys[i] = ety
|
|
listCount++
|
|
default:
|
|
return cty.NilType, function.NewArgErrorf(i, "a set or a list is required")
|
|
}
|
|
}
|
|
|
|
if listCount == len(args) {
|
|
return cty.List(cty.Tuple(elemTys)), nil
|
|
}
|
|
return cty.Set(cty.Tuple(elemTys)), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
ety := retType.ElementType()
|
|
|
|
total := 1
|
|
for _, arg := range args {
|
|
if !arg.Length().IsKnown() {
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
// Because of our type checking function, we are guaranteed that
|
|
// all of the arguments are known, non-null values of types that
|
|
// support LengthInt.
|
|
total *= arg.LengthInt()
|
|
}
|
|
|
|
if total == 0 {
|
|
// If any of the arguments was an empty collection then our result
|
|
// is also an empty collection, which we'll short-circuit here.
|
|
if retType.IsListType() {
|
|
return cty.ListValEmpty(ety), nil
|
|
}
|
|
return cty.SetValEmpty(ety), nil
|
|
}
|
|
|
|
subEtys := ety.TupleElementTypes()
|
|
product := make([][]cty.Value, total)
|
|
|
|
b := make([]cty.Value, total*len(args))
|
|
n := make([]int, len(args))
|
|
s := 0
|
|
argVals := make([][]cty.Value, len(args))
|
|
for i, arg := range args {
|
|
argVals[i] = arg.AsValueSlice()
|
|
}
|
|
|
|
for i := range product {
|
|
e := s + len(args)
|
|
pi := b[s:e]
|
|
product[i] = pi
|
|
s = e
|
|
|
|
for j, n := range n {
|
|
val := argVals[j][n]
|
|
ty := subEtys[j]
|
|
if !val.Type().Equals(ty) {
|
|
var err error
|
|
val, err = convert.Convert(val, ty)
|
|
if err != nil {
|
|
// Should never happen since we checked this in our
|
|
// type-checking function.
|
|
return cty.NilVal, fmt.Errorf("failed to convert argVals[%d][%d] to %s; this is a bug in cty", j, n, ty.FriendlyName())
|
|
}
|
|
}
|
|
pi[j] = val
|
|
}
|
|
|
|
for j := len(n) - 1; j >= 0; j-- {
|
|
n[j]++
|
|
if n[j] < len(argVals[j]) {
|
|
break
|
|
}
|
|
n[j] = 0
|
|
}
|
|
}
|
|
|
|
productVals := make([]cty.Value, total)
|
|
for i, vals := range product {
|
|
productVals[i] = cty.TupleVal(vals)
|
|
}
|
|
|
|
if retType.IsListType() {
|
|
return cty.ListVal(productVals), nil
|
|
}
|
|
return cty.SetVal(productVals), nil
|
|
},
|
|
})
|
|
|
|
// SliceFunc is a function that extracts some consecutive elements
|
|
// from within a list.
|
|
var SliceFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "list",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
{
|
|
Name: "start_index",
|
|
Type: cty.Number,
|
|
},
|
|
{
|
|
Name: "end_index",
|
|
Type: cty.Number,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (cty.Type, error) {
|
|
arg := args[0]
|
|
argTy := arg.Type()
|
|
|
|
if argTy.IsSetType() {
|
|
return cty.NilType, function.NewArgErrorf(0, "cannot slice a set, because its elements do not have indices; explicitly convert to a list if the ordering of the result is not important")
|
|
}
|
|
if !argTy.IsListType() && !argTy.IsTupleType() {
|
|
return cty.NilType, function.NewArgErrorf(0, "must be a list or tuple value")
|
|
}
|
|
|
|
startIndex, endIndex, idxsKnown, err := sliceIndexes(args)
|
|
if err != nil {
|
|
return cty.NilType, err
|
|
}
|
|
|
|
if argTy.IsListType() {
|
|
return argTy, nil
|
|
}
|
|
|
|
if !idxsKnown {
|
|
// If we don't know our start/end indices then we can't predict
|
|
// the result type if we're planning to return a tuple.
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
return cty.Tuple(argTy.TupleElementTypes()[startIndex:endIndex]), nil
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
inputList := args[0]
|
|
|
|
if retType == cty.DynamicPseudoType {
|
|
return cty.DynamicVal, nil
|
|
}
|
|
|
|
// we ignore idxsKnown return value here because the indices are always
|
|
// known here, or else the call would've short-circuited.
|
|
startIndex, endIndex, _, err := sliceIndexes(args)
|
|
if err != nil {
|
|
return cty.NilVal, err
|
|
}
|
|
|
|
if endIndex-startIndex == 0 {
|
|
if retType.IsTupleType() {
|
|
return cty.EmptyTupleVal, nil
|
|
}
|
|
return cty.ListValEmpty(retType.ElementType()), nil
|
|
}
|
|
|
|
outputList := inputList.AsValueSlice()[startIndex:endIndex]
|
|
|
|
if retType.IsTupleType() {
|
|
return cty.TupleVal(outputList), nil
|
|
}
|
|
|
|
return cty.ListVal(outputList), nil
|
|
},
|
|
})
|
|
|
|
func sliceIndexes(args []cty.Value) (int, int, bool, error) {
|
|
var startIndex, endIndex, length int
|
|
var startKnown, endKnown, lengthKnown bool
|
|
|
|
// If it's a tuple then we always know the length by the type, but collections might be unknown or have unknown length
|
|
if args[0].Type().IsTupleType() || args[0].Length().IsKnown() {
|
|
length = args[0].LengthInt()
|
|
lengthKnown = true
|
|
}
|
|
|
|
if args[1].IsKnown() {
|
|
if err := gocty.FromCtyValue(args[1], &startIndex); err != nil {
|
|
return 0, 0, false, function.NewArgErrorf(1, "invalid start index: %s", err)
|
|
}
|
|
if startIndex < 0 {
|
|
return 0, 0, false, function.NewArgErrorf(1, "start index must not be less than zero")
|
|
}
|
|
if lengthKnown && startIndex > length {
|
|
return 0, 0, false, function.NewArgErrorf(1, "start index must not be greater than the length of the list")
|
|
}
|
|
startKnown = true
|
|
}
|
|
if args[2].IsKnown() {
|
|
if err := gocty.FromCtyValue(args[2], &endIndex); err != nil {
|
|
return 0, 0, false, function.NewArgErrorf(2, "invalid end index: %s", err)
|
|
}
|
|
if endIndex < 0 {
|
|
return 0, 0, false, function.NewArgErrorf(2, "end index must not be less than zero")
|
|
}
|
|
if lengthKnown && endIndex > length {
|
|
return 0, 0, false, function.NewArgErrorf(2, "end index must not be greater than the length of the list")
|
|
}
|
|
endKnown = true
|
|
}
|
|
if startKnown && endKnown {
|
|
if startIndex > endIndex {
|
|
return 0, 0, false, function.NewArgErrorf(1, "start index must not be greater than end index")
|
|
}
|
|
}
|
|
return startIndex, endIndex, startKnown && endKnown, nil
|
|
}
|
|
|
|
// ValuesFunc is a function that returns a list of the map values,
|
|
// in the order of the sorted keys.
|
|
var ValuesFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "values",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
ty := args[0].Type()
|
|
if ty.IsMapType() {
|
|
return cty.List(ty.ElementType()), nil
|
|
} else if ty.IsObjectType() {
|
|
// The result is a tuple type with all of the same types as our
|
|
// object type's attributes, sorted in lexicographical order by the
|
|
// keys. (This matches the sort order guaranteed by ElementIterator
|
|
// on a cty object value.)
|
|
atys := ty.AttributeTypes()
|
|
if len(atys) == 0 {
|
|
return cty.EmptyTuple, nil
|
|
}
|
|
attrNames := make([]string, 0, len(atys))
|
|
for name := range atys {
|
|
attrNames = append(attrNames, name)
|
|
}
|
|
sort.Strings(attrNames)
|
|
|
|
tys := make([]cty.Type, len(attrNames))
|
|
for i, name := range attrNames {
|
|
tys[i] = atys[name]
|
|
}
|
|
return cty.Tuple(tys), nil
|
|
}
|
|
return cty.NilType, errors.New("values() requires a map as the first argument")
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
mapVar := args[0]
|
|
|
|
// We can just iterate the map/object value here because cty guarantees
|
|
// that these types always iterate in key lexicographical order.
|
|
var values []cty.Value
|
|
for it := mapVar.ElementIterator(); it.Next(); {
|
|
_, val := it.Element()
|
|
values = append(values, val)
|
|
}
|
|
|
|
if retType.IsTupleType() {
|
|
return cty.TupleVal(values), nil
|
|
}
|
|
if len(values) == 0 {
|
|
return cty.ListValEmpty(retType.ElementType()), nil
|
|
}
|
|
return cty.ListVal(values), nil
|
|
},
|
|
})
|
|
|
|
// ZipmapFunc is a function that constructs a map from a list of keys
|
|
// and a corresponding list of values.
|
|
var ZipmapFunc = function.New(&function.Spec{
|
|
Params: []function.Parameter{
|
|
{
|
|
Name: "keys",
|
|
Type: cty.List(cty.String),
|
|
},
|
|
{
|
|
Name: "values",
|
|
Type: cty.DynamicPseudoType,
|
|
},
|
|
},
|
|
Type: func(args []cty.Value) (ret cty.Type, err error) {
|
|
keys := args[0]
|
|
values := args[1]
|
|
valuesTy := values.Type()
|
|
|
|
switch {
|
|
case valuesTy.IsListType():
|
|
return cty.Map(values.Type().ElementType()), nil
|
|
case valuesTy.IsTupleType():
|
|
if !keys.IsWhollyKnown() {
|
|
// Since zipmap with a tuple produces an object, we need to know
|
|
// all of the key names before we can predict our result type.
|
|
return cty.DynamicPseudoType, nil
|
|
}
|
|
|
|
keysRaw := keys.AsValueSlice()
|
|
valueTypesRaw := valuesTy.TupleElementTypes()
|
|
if len(keysRaw) != len(valueTypesRaw) {
|
|
return cty.NilType, fmt.Errorf("number of keys (%d) does not match number of values (%d)", len(keysRaw), len(valueTypesRaw))
|
|
}
|
|
atys := make(map[string]cty.Type, len(valueTypesRaw))
|
|
for i, keyVal := range keysRaw {
|
|
if keyVal.IsNull() {
|
|
return cty.NilType, fmt.Errorf("keys list has null value at index %d", i)
|
|
}
|
|
key := keyVal.AsString()
|
|
atys[key] = valueTypesRaw[i]
|
|
}
|
|
return cty.Object(atys), nil
|
|
|
|
default:
|
|
return cty.NilType, errors.New("values argument must be a list or tuple value")
|
|
}
|
|
},
|
|
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
|
|
keys := args[0]
|
|
values := args[1]
|
|
|
|
if !keys.IsWhollyKnown() {
|
|
// Unknown map keys and object attributes are not supported, so
|
|
// our entire result must be unknown in this case.
|
|
return cty.UnknownVal(retType), nil
|
|
}
|
|
|
|
// both keys and values are guaranteed to be shallowly-known here,
|
|
// because our declared params above don't allow unknown or null values.
|
|
if keys.LengthInt() != values.LengthInt() {
|
|
return cty.NilVal, fmt.Errorf("number of keys (%d) does not match number of values (%d)", keys.LengthInt(), values.LengthInt())
|
|
}
|
|
|
|
output := make(map[string]cty.Value)
|
|
|
|
i := 0
|
|
for it := keys.ElementIterator(); it.Next(); {
|
|
_, v := it.Element()
|
|
val := values.Index(cty.NumberIntVal(int64(i)))
|
|
output[v.AsString()] = val
|
|
i++
|
|
}
|
|
|
|
switch {
|
|
case retType.IsMapType():
|
|
if len(output) == 0 {
|
|
return cty.MapValEmpty(retType.ElementType()), nil
|
|
}
|
|
return cty.MapVal(output), nil
|
|
case retType.IsObjectType():
|
|
return cty.ObjectVal(output), nil
|
|
default:
|
|
// Should never happen because the type-check function should've
|
|
// caught any other case.
|
|
return cty.NilVal, fmt.Errorf("internally selected incorrect result type %s (this is a bug)", retType.FriendlyName())
|
|
}
|
|
},
|
|
})
|
|
|
|
// helper function to add an element to a list, if it does not already exist
|
|
func appendIfMissing(slice []cty.Value, element cty.Value) ([]cty.Value, error) {
|
|
for _, ele := range slice {
|
|
eq, err := Equal(ele, element)
|
|
if err != nil {
|
|
return slice, err
|
|
}
|
|
if eq.True() {
|
|
return slice, nil
|
|
}
|
|
}
|
|
return append(slice, element), nil
|
|
}
|
|
|
|
// HasIndex determines whether the given collection can be indexed with the
|
|
// given key.
|
|
func HasIndex(collection cty.Value, key cty.Value) (cty.Value, error) {
|
|
return HasIndexFunc.Call([]cty.Value{collection, key})
|
|
}
|
|
|
|
// Index returns an element from the given collection using the given key,
|
|
// or returns an error if there is no element for the given key.
|
|
func Index(collection cty.Value, key cty.Value) (cty.Value, error) {
|
|
return IndexFunc.Call([]cty.Value{collection, key})
|
|
}
|
|
|
|
// Length returns the number of elements in the given collection.
|
|
func Length(collection cty.Value) (cty.Value, error) {
|
|
return LengthFunc.Call([]cty.Value{collection})
|
|
}
|
|
|
|
// Element returns a single element from a given list at the given index. If
|
|
// index is greater than the length of the list then it is wrapped modulo
|
|
// the list length.
|
|
func Element(list, index cty.Value) (cty.Value, error) {
|
|
return ElementFunc.Call([]cty.Value{list, index})
|
|
}
|
|
|
|
// CoalesceList takes any number of list arguments and returns the first one that isn't empty.
|
|
func CoalesceList(args ...cty.Value) (cty.Value, error) {
|
|
return CoalesceListFunc.Call(args)
|
|
}
|
|
|
|
// Compact takes a list of strings and returns a new list
|
|
// with any empty string elements removed.
|
|
func Compact(list cty.Value) (cty.Value, error) {
|
|
return CompactFunc.Call([]cty.Value{list})
|
|
}
|
|
|
|
// Contains determines whether a given list contains a given single value
|
|
// as one of its elements.
|
|
func Contains(list, value cty.Value) (cty.Value, error) {
|
|
return ContainsFunc.Call([]cty.Value{list, value})
|
|
}
|
|
|
|
// Distinct takes a list and returns a new list with any duplicate elements removed.
|
|
func Distinct(list cty.Value) (cty.Value, error) {
|
|
return DistinctFunc.Call([]cty.Value{list})
|
|
}
|
|
|
|
// Chunklist splits a single list into fixed-size chunks, returning a list of lists.
|
|
func Chunklist(list, size cty.Value) (cty.Value, error) {
|
|
return ChunklistFunc.Call([]cty.Value{list, size})
|
|
}
|
|
|
|
// Flatten takes a list and replaces any elements that are lists with a flattened
|
|
// sequence of the list contents.
|
|
func Flatten(list cty.Value) (cty.Value, error) {
|
|
return FlattenFunc.Call([]cty.Value{list})
|
|
}
|
|
|
|
// Keys takes a map and returns a sorted list of the map keys.
|
|
func Keys(inputMap cty.Value) (cty.Value, error) {
|
|
return KeysFunc.Call([]cty.Value{inputMap})
|
|
}
|
|
|
|
// Lookup performs a dynamic lookup into a map.
|
|
// There are two required arguments, map and key, plus an optional default,
|
|
// which is a value to return if no key is found in map.
|
|
func Lookup(inputMap, key, defaultValue cty.Value) (cty.Value, error) {
|
|
return LookupFunc.Call([]cty.Value{inputMap, key, defaultValue})
|
|
}
|
|
|
|
// Merge takes an arbitrary number of maps and returns a single map that contains
|
|
// a merged set of elements from all of the maps.
|
|
//
|
|
// If more than one given map defines the same key then the one that is later in
|
|
// the argument sequence takes precedence.
|
|
func Merge(maps ...cty.Value) (cty.Value, error) {
|
|
return MergeFunc.Call(maps)
|
|
}
|
|
|
|
// ReverseList takes a sequence and produces a new sequence of the same length
|
|
// with all of the same elements as the given sequence but in reverse order.
|
|
func ReverseList(list cty.Value) (cty.Value, error) {
|
|
return ReverseListFunc.Call([]cty.Value{list})
|
|
}
|
|
|
|
// SetProduct computes the Cartesian product of sets or sequences.
|
|
func SetProduct(sets ...cty.Value) (cty.Value, error) {
|
|
return SetProductFunc.Call(sets)
|
|
}
|
|
|
|
// Slice extracts some consecutive elements from within a list.
|
|
func Slice(list, start, end cty.Value) (cty.Value, error) {
|
|
return SliceFunc.Call([]cty.Value{list, start, end})
|
|
}
|
|
|
|
// Values returns a list of the map values, in the order of the sorted keys.
|
|
// This function only works on flat maps.
|
|
func Values(values cty.Value) (cty.Value, error) {
|
|
return ValuesFunc.Call([]cty.Value{values})
|
|
}
|
|
|
|
// Zipmap constructs a map from a list of keys and a corresponding list of values.
|
|
func Zipmap(keys, values cty.Value) (cty.Value, error) {
|
|
return ZipmapFunc.Call([]cty.Value{keys, values})
|
|
}
|