Extend hcl2 support with more functions

Signed-off-by: CrazyMax <crazy-max@users.noreply.github.com>
pull/491/head
CrazyMax 4 years ago
parent 74f76cf4e9
commit 96e7f3224a
No known key found for this signature in database
GPG Key ID: 3248E46B6BB8C7F7

@ -4,7 +4,13 @@ import (
"os" "os"
"strings" "strings"
"github.com/hashicorp/go-cty-funcs/cidr"
"github.com/hashicorp/go-cty-funcs/crypto"
"github.com/hashicorp/go-cty-funcs/encoding"
"github.com/hashicorp/go-cty-funcs/uuid"
hcl "github.com/hashicorp/hcl/v2" hcl "github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/ext/tryfunc"
"github.com/hashicorp/hcl/v2/ext/typeexpr"
"github.com/hashicorp/hcl/v2/ext/userfunc" "github.com/hashicorp/hcl/v2/ext/userfunc"
"github.com/hashicorp/hcl/v2/hclsimple" "github.com/hashicorp/hcl/v2/hclsimple"
"github.com/hashicorp/hcl/v2/hclsyntax" "github.com/hashicorp/hcl/v2/hclsyntax"
@ -23,17 +29,26 @@ var (
"absolute": stdlib.AbsoluteFunc, "absolute": stdlib.AbsoluteFunc,
"add": stdlib.AddFunc, "add": stdlib.AddFunc,
"and": stdlib.AndFunc, "and": stdlib.AndFunc,
"base64decode": encoding.Base64DecodeFunc,
"base64encode": encoding.Base64EncodeFunc,
"bcrypt": crypto.BcryptFunc,
"byteslen": stdlib.BytesLenFunc, "byteslen": stdlib.BytesLenFunc,
"bytesslice": stdlib.BytesSliceFunc, "bytesslice": stdlib.BytesSliceFunc,
"can": tryfunc.CanFunc,
"ceil": stdlib.CeilFunc,
"chomp": stdlib.ChompFunc, "chomp": stdlib.ChompFunc,
"chunklist": stdlib.ChunklistFunc, "chunklist": stdlib.ChunklistFunc,
"ceil": stdlib.CeilFunc, "cidrhost": cidr.HostFunc,
"cidrnetmask": cidr.NetmaskFunc,
"cidrsubnet": cidr.SubnetFunc,
"cidrsubnets": cidr.SubnetsFunc,
"csvdecode": stdlib.CSVDecodeFunc, "csvdecode": stdlib.CSVDecodeFunc,
"coalesce": stdlib.CoalesceFunc, "coalesce": stdlib.CoalesceFunc,
"coalescelist": stdlib.CoalesceListFunc, "coalescelist": stdlib.CoalesceListFunc,
"compact": stdlib.CompactFunc, "compact": stdlib.CompactFunc,
"concat": stdlib.ConcatFunc, "concat": stdlib.ConcatFunc,
"contains": stdlib.ContainsFunc, "contains": stdlib.ContainsFunc,
"convert": typeexpr.ConvertFunc,
"distinct": stdlib.DistinctFunc, "distinct": stdlib.DistinctFunc,
"divide": stdlib.DivideFunc, "divide": stdlib.DivideFunc,
"element": stdlib.ElementFunc, "element": stdlib.ElementFunc,
@ -60,6 +75,7 @@ var (
"lookup": stdlib.LookupFunc, "lookup": stdlib.LookupFunc,
"lower": stdlib.LowerFunc, "lower": stdlib.LowerFunc,
"max": stdlib.MaxFunc, "max": stdlib.MaxFunc,
"md5": crypto.Md5Func,
"merge": stdlib.MergeFunc, "merge": stdlib.MergeFunc,
"min": stdlib.MinFunc, "min": stdlib.MinFunc,
"modulo": stdlib.ModuloFunc, "modulo": stdlib.ModuloFunc,
@ -73,13 +89,18 @@ var (
"range": stdlib.RangeFunc, "range": stdlib.RangeFunc,
"regexall": stdlib.RegexAllFunc, "regexall": stdlib.RegexAllFunc,
"regex": stdlib.RegexFunc, "regex": stdlib.RegexFunc,
"regex_replace": stdlib.RegexReplaceFunc,
"reverse": stdlib.ReverseFunc, "reverse": stdlib.ReverseFunc,
"reverselist": stdlib.ReverseListFunc, "reverselist": stdlib.ReverseListFunc,
"rsadecrypt": crypto.RsaDecryptFunc,
"sethaselement": stdlib.SetHasElementFunc, "sethaselement": stdlib.SetHasElementFunc,
"setintersection": stdlib.SetIntersectionFunc, "setintersection": stdlib.SetIntersectionFunc,
"setsubtract": stdlib.SetSubtractFunc, "setsubtract": stdlib.SetSubtractFunc,
"setsymmetricdifference": stdlib.SetSymmetricDifferenceFunc, "setsymmetricdifference": stdlib.SetSymmetricDifferenceFunc,
"setunion": stdlib.SetUnionFunc, "setunion": stdlib.SetUnionFunc,
"sha1": crypto.Sha1Func,
"sha256": crypto.Sha256Func,
"sha512": crypto.Sha512Func,
"signum": stdlib.SignumFunc, "signum": stdlib.SignumFunc,
"slice": stdlib.SliceFunc, "slice": stdlib.SliceFunc,
"sort": stdlib.SortFunc, "sort": stdlib.SortFunc,
@ -93,7 +114,11 @@ var (
"trimprefix": stdlib.TrimPrefixFunc, "trimprefix": stdlib.TrimPrefixFunc,
"trimspace": stdlib.TrimSpaceFunc, "trimspace": stdlib.TrimSpaceFunc,
"trimsuffix": stdlib.TrimSuffixFunc, "trimsuffix": stdlib.TrimSuffixFunc,
"try": tryfunc.TryFunc,
"upper": stdlib.UpperFunc, "upper": stdlib.UpperFunc,
"urlencode": encoding.URLEncodeFunc,
"uuidv4": uuid.V4Func,
"uuidv5": uuid.V5Func,
"values": stdlib.ValuesFunc, "values": stdlib.ValuesFunc,
"zipmap": stdlib.ZipmapFunc, "zipmap": stdlib.ZipmapFunc,
} }

@ -24,11 +24,12 @@ require (
github.com/erikstmartin/go-testdb v0.0.0-20160219214506-8d10e4a1bae5 // indirect github.com/erikstmartin/go-testdb v0.0.0-20160219214506-8d10e4a1bae5 // indirect
github.com/fvbommel/sortorder v1.0.1 // indirect github.com/fvbommel/sortorder v1.0.1 // indirect
github.com/gofrs/flock v0.7.3 github.com/gofrs/flock v0.7.3
github.com/gofrs/uuid v3.2.0+incompatible // indirect github.com/gofrs/uuid v3.3.0+incompatible // indirect
github.com/google/certificate-transparency-go v1.0.21 // indirect github.com/google/certificate-transparency-go v1.0.21 // indirect
github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510 github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510
github.com/hailocab/go-hostpool v0.0.0-20160125115350-e80d13ce29ed // indirect github.com/hailocab/go-hostpool v0.0.0-20160125115350-e80d13ce29ed // indirect
github.com/hashicorp/hcl/v2 v2.6.0 github.com/hashicorp/go-cty-funcs v0.0.0-20200930094925-2721b1e36840
github.com/hashicorp/hcl/v2 v2.8.1
github.com/jinzhu/gorm v1.9.2 // indirect github.com/jinzhu/gorm v1.9.2 // indirect
github.com/jinzhu/inflection v0.0.0-20180308033659-04140366298a // indirect github.com/jinzhu/inflection v0.0.0-20180308033659-04140366298a // indirect
github.com/jinzhu/now v1.0.0 // indirect github.com/jinzhu/now v1.0.0 // indirect
@ -48,8 +49,8 @@ require (
github.com/theupdateframework/notary v0.6.1 // indirect github.com/theupdateframework/notary v0.6.1 // indirect
github.com/tonistiigi/units v0.0.0-20180711220420-6950e57a87ea github.com/tonistiigi/units v0.0.0-20180711220420-6950e57a87ea
github.com/xeipuuv/gojsonschema v1.2.0 // indirect github.com/xeipuuv/gojsonschema v1.2.0 // indirect
github.com/zclconf/go-cty v1.4.0 github.com/zclconf/go-cty v1.7.1
golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208 golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9
gopkg.in/dancannon/gorethink.v3 v3.0.5 // indirect gopkg.in/dancannon/gorethink.v3 v3.0.5 // indirect
gopkg.in/fatih/pool.v2 v2.0.0 // indirect gopkg.in/fatih/pool.v2 v2.0.0 // indirect
gopkg.in/gorethink/gorethink.v3 v3.0.5 // indirect gopkg.in/gorethink/gorethink.v3 v3.0.5 // indirect

@ -140,6 +140,9 @@ github.com/apex/log v1.3.0/go.mod h1:jd8Vpsr46WAe3EZSQ/IUMs2qQD/GOycT5rPWCO1yGcs
github.com/apex/logs v0.0.4/go.mod h1:XzxuLZ5myVHDy9SAmYpamKKRNApGj54PfYLcFrXqDwo= github.com/apex/logs v0.0.4/go.mod h1:XzxuLZ5myVHDy9SAmYpamKKRNApGj54PfYLcFrXqDwo=
github.com/aphistic/golf v0.0.0-20180712155816-02c07f170c5a/go.mod h1:3NqKYiepwy8kCu4PNA+aP7WUV72eXWJeP9/r3/K9aLE= github.com/aphistic/golf v0.0.0-20180712155816-02c07f170c5a/go.mod h1:3NqKYiepwy8kCu4PNA+aP7WUV72eXWJeP9/r3/K9aLE=
github.com/aphistic/sweet v0.2.0/go.mod h1:fWDlIh/isSE9n6EPsRmC0det+whmX6dJid3stzu0Xys= github.com/aphistic/sweet v0.2.0/go.mod h1:fWDlIh/isSE9n6EPsRmC0det+whmX6dJid3stzu0Xys=
github.com/apparentlymart/go-cidr v1.0.1 h1:NmIwLZ/KdsjIUlhf+/Np40atNXm/+lZ5txfTJ/SpF+U=
github.com/apparentlymart/go-cidr v1.0.1/go.mod h1:EBcsNrHc3zQeuaeCeCtQruQm+n9/YjEn/vI25Lg7Gwc=
github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3 h1:ZSTrOEhiM5J5RFxEaFvMZVEAM1KvT1YzbEOwB2EAGjA=
github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3/go.mod h1:oL81AME2rN47vu18xqj1S1jPIPuN7afo62yKTNn3XMM= github.com/apparentlymart/go-dump v0.0.0-20180507223929-23540a00eaa3/go.mod h1:oL81AME2rN47vu18xqj1S1jPIPuN7afo62yKTNn3XMM=
github.com/apparentlymart/go-textseg v1.0.0 h1:rRmlIsPEEhUTIKQb7T++Nz/A5Q6C9IuX2wFoYVvnCs0= github.com/apparentlymart/go-textseg v1.0.0 h1:rRmlIsPEEhUTIKQb7T++Nz/A5Q6C9IuX2wFoYVvnCs0=
github.com/apparentlymart/go-textseg v1.0.0/go.mod h1:z96Txxhf3xSFMPmb5X/1W05FF/Nj9VFpLOpjS5yuumk= github.com/apparentlymart/go-textseg v1.0.0/go.mod h1:z96Txxhf3xSFMPmb5X/1W05FF/Nj9VFpLOpjS5yuumk=
@ -174,6 +177,7 @@ github.com/bketelsen/crypt v0.0.3-0.20200106085610-5cbc8cc4026c/go.mod h1:MKsuJm
github.com/blakesmith/ar v0.0.0-20190502131153-809d4375e1fb/go.mod h1:PkYb9DJNAwrSvRx5DYA+gUcOIgTGVMNkfSCbZM8cWpI= github.com/blakesmith/ar v0.0.0-20190502131153-809d4375e1fb/go.mod h1:PkYb9DJNAwrSvRx5DYA+gUcOIgTGVMNkfSCbZM8cWpI=
github.com/blang/semver v3.1.0+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk= github.com/blang/semver v3.1.0+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk=
github.com/blang/semver v3.5.0+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk= github.com/blang/semver v3.5.0+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk=
github.com/bmatcuk/doublestar v1.1.5/go.mod h1:wiQtGV+rzVYxB7WIlirSN++5HPtPlXEo9MEoZQC/PmE=
github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869 h1:DDGfHa7BWjL4YnC6+E63dPcxHo2sUxDIu8g3QgEJdRY= github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869 h1:DDGfHa7BWjL4YnC6+E63dPcxHo2sUxDIu8g3QgEJdRY=
github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869/go.mod h1:Ekp36dRnpXw/yCqJaO+ZrUyxD+3VXMFFr56k5XYrpB4= github.com/bmizerany/assert v0.0.0-20160611221934-b7ed37b82869/go.mod h1:Ekp36dRnpXw/yCqJaO+ZrUyxD+3VXMFFr56k5XYrpB4=
github.com/bombsimon/wsl/v2 v2.0.0/go.mod h1:mf25kr/SqFEPhhcxW1+7pxzGlW+hIl/hYTKY95VwV8U= github.com/bombsimon/wsl/v2 v2.0.0/go.mod h1:mf25kr/SqFEPhhcxW1+7pxzGlW+hIl/hYTKY95VwV8U=
@ -421,8 +425,8 @@ github.com/godbus/dbus/v5 v5.0.3/go.mod h1:xhWf0FNVPg57R7Z0UbKHbJfkEywrmjJnf7w5x
github.com/gofrs/flock v0.0.0-20190320160742-5135e617513b/go.mod h1:F1TvTiK9OcQqauNUHlbJvyl9Qa1QvF/gOUDKA14jxHU= github.com/gofrs/flock v0.0.0-20190320160742-5135e617513b/go.mod h1:F1TvTiK9OcQqauNUHlbJvyl9Qa1QvF/gOUDKA14jxHU=
github.com/gofrs/flock v0.7.3 h1:I0EKY9l8HZCXTMYC4F80vwT6KNypV9uYKP3Alm/hjmQ= github.com/gofrs/flock v0.7.3 h1:I0EKY9l8HZCXTMYC4F80vwT6KNypV9uYKP3Alm/hjmQ=
github.com/gofrs/flock v0.7.3/go.mod h1:F1TvTiK9OcQqauNUHlbJvyl9Qa1QvF/gOUDKA14jxHU= github.com/gofrs/flock v0.7.3/go.mod h1:F1TvTiK9OcQqauNUHlbJvyl9Qa1QvF/gOUDKA14jxHU=
github.com/gofrs/uuid v3.2.0+incompatible h1:y12jRkkFxsd7GpqdSZ+/KCs/fJbqpEXSGd4+jfEaewE= github.com/gofrs/uuid v3.3.0+incompatible h1:8K4tyRfvU1CYPgJsveYFQMhpFd/wXNM7iK6rR7UHz84=
github.com/gofrs/uuid v3.2.0+incompatible/go.mod h1:b2aQJv3Z4Fp6yNu3cdSllBxTCLRxnplIgP/c0N/04lM= github.com/gofrs/uuid v3.3.0+incompatible/go.mod h1:b2aQJv3Z4Fp6yNu3cdSllBxTCLRxnplIgP/c0N/04lM=
github.com/gogo/googleapis v1.2.0/go.mod h1:Njal3psf3qN6dwBtQfUmBZh2ybovJ0tlu3o/AC7HYjU= github.com/gogo/googleapis v1.2.0/go.mod h1:Njal3psf3qN6dwBtQfUmBZh2ybovJ0tlu3o/AC7HYjU=
github.com/gogo/googleapis v1.3.2 h1:kX1es4djPJrsDhY7aZKJy7aZasdcB5oSOEphMjSB53c= github.com/gogo/googleapis v1.3.2 h1:kX1es4djPJrsDhY7aZKJy7aZasdcB5oSOEphMjSB53c=
github.com/gogo/googleapis v1.3.2/go.mod h1:5YRNX2z1oM5gXdAkurHa942MDgEJyk02w4OecKY87+c= github.com/gogo/googleapis v1.3.2/go.mod h1:5YRNX2z1oM5gXdAkurHa942MDgEJyk02w4OecKY87+c=
@ -564,6 +568,8 @@ github.com/hashicorp/consul/sdk v0.1.1/go.mod h1:VKf9jXwCTEY1QZP2MOLRhb5i/I/ssyN
github.com/hashicorp/errwrap v0.0.0-20141028054710-7554cd9344ce/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4= github.com/hashicorp/errwrap v0.0.0-20141028054710-7554cd9344ce/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4=
github.com/hashicorp/errwrap v1.0.0/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4= github.com/hashicorp/errwrap v1.0.0/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4=
github.com/hashicorp/go-cleanhttp v0.5.1/go.mod h1:JpRdi6/HCYpAwUzNwuwqhbovhLtngrth3wmdIIUrZ80= github.com/hashicorp/go-cleanhttp v0.5.1/go.mod h1:JpRdi6/HCYpAwUzNwuwqhbovhLtngrth3wmdIIUrZ80=
github.com/hashicorp/go-cty-funcs v0.0.0-20200930094925-2721b1e36840 h1:kgvybwEeu0SXktbB2y3uLHX9lklLo+nzUwh59A3jzQc=
github.com/hashicorp/go-cty-funcs v0.0.0-20200930094925-2721b1e36840/go.mod h1:Abjk0jbRkDaNCzsRhOv2iDCofYpX1eVsjozoiK63qLA=
github.com/hashicorp/go-hclog v0.9.2/go.mod h1:5CU+agLiy3J7N7QjHK5d05KxGsuXiQLrjA0H7acj2lQ= github.com/hashicorp/go-hclog v0.9.2/go.mod h1:5CU+agLiy3J7N7QjHK5d05KxGsuXiQLrjA0H7acj2lQ=
github.com/hashicorp/go-immutable-radix v1.0.0/go.mod h1:0y9vanUI8NX6FsYoO3zeMjhV/C5i9g4Q3DwcSNZ4P60= github.com/hashicorp/go-immutable-radix v1.0.0/go.mod h1:0y9vanUI8NX6FsYoO3zeMjhV/C5i9g4Q3DwcSNZ4P60=
github.com/hashicorp/go-msgpack v0.5.3/go.mod h1:ahLV/dePpqEmjfWmKiqvPkv/twdG7iPBM1vqhUKIvfM= github.com/hashicorp/go-msgpack v0.5.3/go.mod h1:ahLV/dePpqEmjfWmKiqvPkv/twdG7iPBM1vqhUKIvfM=
@ -584,8 +590,8 @@ github.com/hashicorp/golang-lru v0.5.1/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ
github.com/hashicorp/golang-lru v0.5.3/go.mod h1:iADmTwqILo4mZ8BN3D2Q6+9jd8WM5uGBxy+E8yxSoD4= github.com/hashicorp/golang-lru v0.5.3/go.mod h1:iADmTwqILo4mZ8BN3D2Q6+9jd8WM5uGBxy+E8yxSoD4=
github.com/hashicorp/hcl v1.0.0 h1:0Anlzjpi4vEasTeNFn2mLJgTSwt0+6sfsiTG8qcWGx4= github.com/hashicorp/hcl v1.0.0 h1:0Anlzjpi4vEasTeNFn2mLJgTSwt0+6sfsiTG8qcWGx4=
github.com/hashicorp/hcl v1.0.0/go.mod h1:E5yfLk+7swimpb2L/Alb/PJmXilQ/rhwaUYs4T20WEQ= github.com/hashicorp/hcl v1.0.0/go.mod h1:E5yfLk+7swimpb2L/Alb/PJmXilQ/rhwaUYs4T20WEQ=
github.com/hashicorp/hcl/v2 v2.6.0 h1:3krZOfGY6SziUXa6H9PJU6TyohHn7I+ARYnhbeNBz+o= github.com/hashicorp/hcl/v2 v2.8.1 h1:FJ60CIYaMyJOKzPndhMyjiz353Fd+2jr6PodF5Xzb08=
github.com/hashicorp/hcl/v2 v2.6.0/go.mod h1:bQTN5mpo+jewjJgh8jr0JUguIi7qPHUF6yIfAEN3jqY= github.com/hashicorp/hcl/v2 v2.8.1/go.mod h1:bQTN5mpo+jewjJgh8jr0JUguIi7qPHUF6yIfAEN3jqY=
github.com/hashicorp/logutils v1.0.0/go.mod h1:QIAnNjmIWmVIIkWDTG1z5v++HQmx9WQRO+LraFDTW64= github.com/hashicorp/logutils v1.0.0/go.mod h1:QIAnNjmIWmVIIkWDTG1z5v++HQmx9WQRO+LraFDTW64=
github.com/hashicorp/mdns v1.0.0/go.mod h1:tL+uN++7HEJ6SQLQ2/p+z2pH24WQKWjBPkE0mNTz8vQ= github.com/hashicorp/mdns v1.0.0/go.mod h1:tL+uN++7HEJ6SQLQ2/p+z2pH24WQKWjBPkE0mNTz8vQ=
github.com/hashicorp/memberlist v0.1.3/go.mod h1:ajVTdAv/9Im8oMAAj5G31PhhMCZJV2pPBoIllUwCN7I= github.com/hashicorp/memberlist v0.1.3/go.mod h1:ajVTdAv/9Im8oMAAj5G31PhhMCZJV2pPBoIllUwCN7I=
@ -1004,6 +1010,8 @@ github.com/vishvananda/netlink v1.1.0/go.mod h1:cTgwzPIzzgDAYoQrMm0EdrjRUBkTqKYp
github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df h1:OviZH7qLw/7ZovXvuNyL3XQl8UFofeikI1NW1Gypu7k= github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df h1:OviZH7qLw/7ZovXvuNyL3XQl8UFofeikI1NW1Gypu7k=
github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df/go.mod h1:JP3t17pCcGlemwknint6hfoeCVQrEMVwxRLRjXpq+BU= github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df/go.mod h1:JP3t17pCcGlemwknint6hfoeCVQrEMVwxRLRjXpq+BU=
github.com/vmihailenco/msgpack v3.3.3+incompatible/go.mod h1:fy3FlTQTDXWkZ7Bh6AcGMlsjHatGryHQYUTf1ShIgkk= github.com/vmihailenco/msgpack v3.3.3+incompatible/go.mod h1:fy3FlTQTDXWkZ7Bh6AcGMlsjHatGryHQYUTf1ShIgkk=
github.com/vmihailenco/msgpack/v4 v4.3.12/go.mod h1:gborTTJjAo/GWTqqRjrLCn9pgNN+NXzzngzBKDPIqw4=
github.com/vmihailenco/tagparser v0.1.1/go.mod h1:OeAg3pn3UbLjkWt+rN9oFYB6u/cQgqMEUPoW2WPyhdI=
github.com/vmware/govmomi v0.20.3/go.mod h1:URlwyTFZX72RmxtxuaFL2Uj3fD1JTvZdx59bHWk6aFU= github.com/vmware/govmomi v0.20.3/go.mod h1:URlwyTFZX72RmxtxuaFL2Uj3fD1JTvZdx59bHWk6aFU=
github.com/willf/bitset v1.1.11-0.20200630133818-d5bec3311243 h1:R43TdZy32XXSXjJn7M/HhALJ9imq6ztLnChfYJpVDnM= github.com/willf/bitset v1.1.11-0.20200630133818-d5bec3311243 h1:R43TdZy32XXSXjJn7M/HhALJ9imq6ztLnChfYJpVDnM=
github.com/willf/bitset v1.1.11-0.20200630133818-d5bec3311243/go.mod h1:RjeCKbqT1RxIR/KWY6phxZiaY1IyutSBfGjNPySAYV4= github.com/willf/bitset v1.1.11-0.20200630133818-d5bec3311243/go.mod h1:RjeCKbqT1RxIR/KWY6phxZiaY1IyutSBfGjNPySAYV4=
@ -1026,8 +1034,9 @@ github.com/yvasiyarov/go-metrics v0.0.0-20140926110328-57bccd1ccd43/go.mod h1:aX
github.com/yvasiyarov/gorelic v0.0.0-20141212073537-a9bba5b9ab50/go.mod h1:NUSPSUX/bi6SeDMUh6brw0nXpxHnc96TguQh0+r/ssA= github.com/yvasiyarov/gorelic v0.0.0-20141212073537-a9bba5b9ab50/go.mod h1:NUSPSUX/bi6SeDMUh6brw0nXpxHnc96TguQh0+r/ssA=
github.com/yvasiyarov/newrelic_platform_go v0.0.0-20140908184405-b21fdbd4370f/go.mod h1:GlGEuHIJweS1mbCqG+7vt2nvWLzLLnRHbXz5JKd/Qbg= github.com/yvasiyarov/newrelic_platform_go v0.0.0-20140908184405-b21fdbd4370f/go.mod h1:GlGEuHIJweS1mbCqG+7vt2nvWLzLLnRHbXz5JKd/Qbg=
github.com/zclconf/go-cty v1.2.0/go.mod h1:hOPWgoHbaTUnI5k4D2ld+GRpFJSCe6bCM7m1q/N4PQ8= github.com/zclconf/go-cty v1.2.0/go.mod h1:hOPWgoHbaTUnI5k4D2ld+GRpFJSCe6bCM7m1q/N4PQ8=
github.com/zclconf/go-cty v1.4.0 h1:+q+tmgyUB94HIdH/uVTIi/+kt3pt4sHwEZAcTyLoGsQ=
github.com/zclconf/go-cty v1.4.0/go.mod h1:nHzOclRkoj++EU9ZjSrZvRG0BXIWt8c7loYc0qXAFGQ= github.com/zclconf/go-cty v1.4.0/go.mod h1:nHzOclRkoj++EU9ZjSrZvRG0BXIWt8c7loYc0qXAFGQ=
github.com/zclconf/go-cty v1.7.1 h1:AvsC01GMhMLFL8CgEYdHGM+yLnnDOwhPAYcgTkeF0Gw=
github.com/zclconf/go-cty v1.7.1/go.mod h1:VDR4+I79ubFBGm1uJac1226K5yANQFHeauxPBoP54+o=
go.etcd.io/bbolt v1.3.2/go.mod h1:IbVyRI1SCnLcuJnV2u8VeU0CEYM7e686BmAb1XKL+uU= go.etcd.io/bbolt v1.3.2/go.mod h1:IbVyRI1SCnLcuJnV2u8VeU0CEYM7e686BmAb1XKL+uU=
go.etcd.io/bbolt v1.3.3/go.mod h1:IbVyRI1SCnLcuJnV2u8VeU0CEYM7e686BmAb1XKL+uU= go.etcd.io/bbolt v1.3.3/go.mod h1:IbVyRI1SCnLcuJnV2u8VeU0CEYM7e686BmAb1XKL+uU=
go.etcd.io/bbolt v1.3.5 h1:XAzx9gjCb0Rxj7EoqcClPD1d5ZBxZJk0jbuoPHenBt0= go.etcd.io/bbolt v1.3.5 h1:XAzx9gjCb0Rxj7EoqcClPD1d5ZBxZJk0jbuoPHenBt0=
@ -1066,6 +1075,7 @@ golang.org/x/crypto v0.0.0-20191002192127-34f69633bfdc/go.mod h1:yigFU9vqHzYiE8U
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20191206172530-e9b2fee46413/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20191206172530-e9b2fee46413/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200220183623-bac4c82f6975/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20200220183623-bac4c82f6975/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200422194213-44a606286825/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9 h1:psW17arqaxU48Z5kZ0CQnkZWQJsqcURM6tKiBApRjXI= golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9 h1:psW17arqaxU48Z5kZ0CQnkZWQJsqcURM6tKiBApRjXI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.0.0-20201117144127-c1f2f97bffc9 h1:phUcVbl53swtrUN8kQEXFhUxPlIlWyBfKmidCu7P95o= golang.org/x/crypto v0.0.0-20201117144127-c1f2f97bffc9 h1:phUcVbl53swtrUN8kQEXFhUxPlIlWyBfKmidCu7P95o=
@ -1169,6 +1179,8 @@ golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20200317015054-43a5402ce75a/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20200317015054-43a5402ce75a/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208 h1:qwRHBd0NqMbJxfbotnDhm2ByMI1Shq4Y6oRJo21SGJA= golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208 h1:qwRHBd0NqMbJxfbotnDhm2ByMI1Shq4Y6oRJo21SGJA=
golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM= golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9 h1:SQFwaSi55rU7vdNs9Yr0Z324VNlrF+0wMqRXT4St8ck=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20170830134202-bb24a47a89ea/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20170830134202-bb24a47a89ea/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180823144017-11551d06cbcc/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20180823144017-11551d06cbcc/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY= golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=

@ -0,0 +1,19 @@
Copyright (c) 2015 Martin Atkins
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

@ -0,0 +1,218 @@
// Package cidr is a collection of assorted utilities for computing
// network and host addresses within network ranges.
//
// It expects a CIDR-type address structure where addresses are divided into
// some number of prefix bits representing the network and then the remaining
// suffix bits represent the host.
//
// For example, it can help to calculate addresses for sub-networks of a
// parent network, or to calculate host addresses within a particular prefix.
//
// At present this package is prioritizing simplicity of implementation and
// de-prioritizing speed and memory usage. Thus caution is advised before
// using this package in performance-critical applications or hot codepaths.
// Patches to improve the speed and memory usage may be accepted as long as
// they do not result in a significant increase in code complexity.
package cidr
import (
"fmt"
"math/big"
"net"
)
// Subnet takes a parent CIDR range and creates a subnet within it
// with the given number of additional prefix bits and the given
// network number.
//
// For example, 10.3.0.0/16, extended by 8 bits, with a network number
// of 5, becomes 10.3.5.0/24 .
func Subnet(base *net.IPNet, newBits int, num int) (*net.IPNet, error) {
ip := base.IP
mask := base.Mask
parentLen, addrLen := mask.Size()
newPrefixLen := parentLen + newBits
if newPrefixLen > addrLen {
return nil, fmt.Errorf("insufficient address space to extend prefix of %d by %d", parentLen, newBits)
}
maxNetNum := uint64(1<<uint64(newBits)) - 1
if uint64(num) > maxNetNum {
return nil, fmt.Errorf("prefix extension of %d does not accommodate a subnet numbered %d", newBits, num)
}
return &net.IPNet{
IP: insertNumIntoIP(ip, big.NewInt(int64(num)), newPrefixLen),
Mask: net.CIDRMask(newPrefixLen, addrLen),
}, nil
}
// Host takes a parent CIDR range and turns it into a host IP address with
// the given host number.
//
// For example, 10.3.0.0/16 with a host number of 2 gives 10.3.0.2.
func Host(base *net.IPNet, num int) (net.IP, error) {
ip := base.IP
mask := base.Mask
bigNum := big.NewInt(int64(num))
parentLen, addrLen := mask.Size()
hostLen := addrLen - parentLen
maxHostNum := big.NewInt(int64(1))
maxHostNum.Lsh(maxHostNum, uint(hostLen))
maxHostNum.Sub(maxHostNum, big.NewInt(1))
numUint64 := big.NewInt(int64(bigNum.Uint64()))
if bigNum.Cmp(big.NewInt(0)) == -1 {
numUint64.Neg(bigNum)
numUint64.Sub(numUint64, big.NewInt(int64(1)))
bigNum.Sub(maxHostNum, numUint64)
}
if numUint64.Cmp(maxHostNum) == 1 {
return nil, fmt.Errorf("prefix of %d does not accommodate a host numbered %d", parentLen, num)
}
var bitlength int
if ip.To4() != nil {
bitlength = 32
} else {
bitlength = 128
}
return insertNumIntoIP(ip, bigNum, bitlength), nil
}
// AddressRange returns the first and last addresses in the given CIDR range.
func AddressRange(network *net.IPNet) (net.IP, net.IP) {
// the first IP is easy
firstIP := network.IP
// the last IP is the network address OR NOT the mask address
prefixLen, bits := network.Mask.Size()
if prefixLen == bits {
// Easy!
// But make sure that our two slices are distinct, since they
// would be in all other cases.
lastIP := make([]byte, len(firstIP))
copy(lastIP, firstIP)
return firstIP, lastIP
}
firstIPInt, bits := ipToInt(firstIP)
hostLen := uint(bits) - uint(prefixLen)
lastIPInt := big.NewInt(1)
lastIPInt.Lsh(lastIPInt, hostLen)
lastIPInt.Sub(lastIPInt, big.NewInt(1))
lastIPInt.Or(lastIPInt, firstIPInt)
return firstIP, intToIP(lastIPInt, bits)
}
// AddressCount returns the number of distinct host addresses within the given
// CIDR range.
//
// Since the result is a uint64, this function returns meaningful information
// only for IPv4 ranges and IPv6 ranges with a prefix size of at least 65.
func AddressCount(network *net.IPNet) uint64 {
prefixLen, bits := network.Mask.Size()
return 1 << (uint64(bits) - uint64(prefixLen))
}
//VerifyNoOverlap takes a list subnets and supernet (CIDRBlock) and verifies
//none of the subnets overlap and all subnets are in the supernet
//it returns an error if any of those conditions are not satisfied
func VerifyNoOverlap(subnets []*net.IPNet, CIDRBlock *net.IPNet) error {
firstLastIP := make([][]net.IP, len(subnets))
for i, s := range subnets {
first, last := AddressRange(s)
firstLastIP[i] = []net.IP{first, last}
}
for i, s := range subnets {
if !CIDRBlock.Contains(firstLastIP[i][0]) || !CIDRBlock.Contains(firstLastIP[i][1]) {
return fmt.Errorf("%s does not fully contain %s", CIDRBlock.String(), s.String())
}
for j := 0; j < len(subnets); j++ {
if i == j {
continue
}
first := firstLastIP[j][0]
last := firstLastIP[j][1]
if s.Contains(first) || s.Contains(last) {
return fmt.Errorf("%s overlaps with %s", subnets[j].String(), s.String())
}
}
}
return nil
}
// PreviousSubnet returns the subnet of the desired mask in the IP space
// just lower than the start of IPNet provided. If the IP space rolls over
// then the second return value is true
func PreviousSubnet(network *net.IPNet, prefixLen int) (*net.IPNet, bool) {
startIP := checkIPv4(network.IP)
previousIP := make(net.IP, len(startIP))
copy(previousIP, startIP)
cMask := net.CIDRMask(prefixLen, 8*len(previousIP))
previousIP = Dec(previousIP)
previous := &net.IPNet{IP: previousIP.Mask(cMask), Mask: cMask}
if startIP.Equal(net.IPv4zero) || startIP.Equal(net.IPv6zero) {
return previous, true
}
return previous, false
}
// NextSubnet returns the next available subnet of the desired mask size
// starting for the maximum IP of the offset subnet
// If the IP exceeds the maxium IP then the second return value is true
func NextSubnet(network *net.IPNet, prefixLen int) (*net.IPNet, bool) {
_, currentLast := AddressRange(network)
mask := net.CIDRMask(prefixLen, 8*len(currentLast))
currentSubnet := &net.IPNet{IP: currentLast.Mask(mask), Mask: mask}
_, last := AddressRange(currentSubnet)
last = Inc(last)
next := &net.IPNet{IP: last.Mask(mask), Mask: mask}
if last.Equal(net.IPv4zero) || last.Equal(net.IPv6zero) {
return next, true
}
return next, false
}
//Inc increases the IP by one this returns a new []byte for the IP
func Inc(IP net.IP) net.IP {
IP = checkIPv4(IP)
incIP := make([]byte, len(IP))
copy(incIP, IP)
for j := len(incIP) - 1; j >= 0; j-- {
incIP[j]++
if incIP[j] > 0 {
break
}
}
return incIP
}
//Dec decreases the IP by one this returns a new []byte for the IP
func Dec(IP net.IP) net.IP {
IP = checkIPv4(IP)
decIP := make([]byte, len(IP))
copy(decIP, IP)
decIP = checkIPv4(decIP)
for j := len(decIP) - 1; j >= 0; j-- {
decIP[j]--
if decIP[j] < 255 {
break
}
}
return decIP
}
func checkIPv4(ip net.IP) net.IP {
// Go for some reason allocs IPv6len for IPv4 so we have to correct it
if v4 := ip.To4(); v4 != nil {
return v4
}
return ip
}

@ -0,0 +1,37 @@
package cidr
import (
"fmt"
"math/big"
"net"
)
func ipToInt(ip net.IP) (*big.Int, int) {
val := &big.Int{}
val.SetBytes([]byte(ip))
if len(ip) == net.IPv4len {
return val, 32
} else if len(ip) == net.IPv6len {
return val, 128
} else {
panic(fmt.Errorf("Unsupported address length %d", len(ip)))
}
}
func intToIP(ipInt *big.Int, bits int) net.IP {
ipBytes := ipInt.Bytes()
ret := make([]byte, bits/8)
// Pack our IP bytes into the end of the return array,
// since big.Int.Bytes() removes front zero padding.
for i := 1; i <= len(ipBytes); i++ {
ret[len(ret)-i] = ipBytes[len(ipBytes)-i]
}
return net.IP(ret)
}
func insertNumIntoIP(ip net.IP, bigNum *big.Int, prefixLen int) net.IP {
ipInt, totalBits := ipToInt(ip)
bigNum.Lsh(bigNum, uint(totalBits-prefixLen))
ipInt.Or(ipInt, bigNum)
return intToIP(ipInt, totalBits)
}

@ -0,0 +1,9 @@
language: go
go:
- 1.4.3
- 1.5.3
- tip
script:
- go test -v ./...

@ -0,0 +1,10 @@
# How to contribute
We definitely welcome patches and contribution to this project!
### Legal requirements
In order to protect both you and ourselves, you will need to sign the
[Contributor License Agreement](https://cla.developers.google.com/clas).
You may have already signed it for other Google projects.

@ -0,0 +1,9 @@
Paul Borman <borman@google.com>
bmatsuo
shawnps
theory
jboverfelt
dsymonds
cd1
wallclockbuilder
dansouza

@ -0,0 +1,27 @@
Copyright (c) 2009,2014 Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@ -0,0 +1,19 @@
# uuid ![build status](https://travis-ci.org/google/uuid.svg?branch=master)
The uuid package generates and inspects UUIDs based on
[RFC 4122](http://tools.ietf.org/html/rfc4122)
and DCE 1.1: Authentication and Security Services.
This package is based on the github.com/pborman/uuid package (previously named
code.google.com/p/go-uuid). It differs from these earlier packages in that
a UUID is a 16 byte array rather than a byte slice. One loss due to this
change is the ability to represent an invalid UUID (vs a NIL UUID).
###### Install
`go get github.com/google/uuid`
###### Documentation
[![GoDoc](https://godoc.org/github.com/google/uuid?status.svg)](http://godoc.org/github.com/google/uuid)
Full `go doc` style documentation for the package can be viewed online without
installing this package by using the GoDoc site here:
http://godoc.org/github.com/google/uuid

@ -0,0 +1,80 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
"fmt"
"os"
)
// A Domain represents a Version 2 domain
type Domain byte
// Domain constants for DCE Security (Version 2) UUIDs.
const (
Person = Domain(0)
Group = Domain(1)
Org = Domain(2)
)
// NewDCESecurity returns a DCE Security (Version 2) UUID.
//
// The domain should be one of Person, Group or Org.
// On a POSIX system the id should be the users UID for the Person
// domain and the users GID for the Group. The meaning of id for
// the domain Org or on non-POSIX systems is site defined.
//
// For a given domain/id pair the same token may be returned for up to
// 7 minutes and 10 seconds.
func NewDCESecurity(domain Domain, id uint32) (UUID, error) {
uuid, err := NewUUID()
if err == nil {
uuid[6] = (uuid[6] & 0x0f) | 0x20 // Version 2
uuid[9] = byte(domain)
binary.BigEndian.PutUint32(uuid[0:], id)
}
return uuid, err
}
// NewDCEPerson returns a DCE Security (Version 2) UUID in the person
// domain with the id returned by os.Getuid.
//
// NewDCESecurity(Person, uint32(os.Getuid()))
func NewDCEPerson() (UUID, error) {
return NewDCESecurity(Person, uint32(os.Getuid()))
}
// NewDCEGroup returns a DCE Security (Version 2) UUID in the group
// domain with the id returned by os.Getgid.
//
// NewDCESecurity(Group, uint32(os.Getgid()))
func NewDCEGroup() (UUID, error) {
return NewDCESecurity(Group, uint32(os.Getgid()))
}
// Domain returns the domain for a Version 2 UUID. Domains are only defined
// for Version 2 UUIDs.
func (uuid UUID) Domain() Domain {
return Domain(uuid[9])
}
// ID returns the id for a Version 2 UUID. IDs are only defined for Version 2
// UUIDs.
func (uuid UUID) ID() uint32 {
return binary.BigEndian.Uint32(uuid[0:4])
}
func (d Domain) String() string {
switch d {
case Person:
return "Person"
case Group:
return "Group"
case Org:
return "Org"
}
return fmt.Sprintf("Domain%d", int(d))
}

@ -0,0 +1,12 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package uuid generates and inspects UUIDs.
//
// UUIDs are based on RFC 4122 and DCE 1.1: Authentication and Security
// Services.
//
// A UUID is a 16 byte (128 bit) array. UUIDs may be used as keys to
// maps or compared directly.
package uuid

@ -0,0 +1 @@
module github.com/google/uuid

@ -0,0 +1,53 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"crypto/md5"
"crypto/sha1"
"hash"
)
// Well known namespace IDs and UUIDs
var (
NameSpaceDNS = Must(Parse("6ba7b810-9dad-11d1-80b4-00c04fd430c8"))
NameSpaceURL = Must(Parse("6ba7b811-9dad-11d1-80b4-00c04fd430c8"))
NameSpaceOID = Must(Parse("6ba7b812-9dad-11d1-80b4-00c04fd430c8"))
NameSpaceX500 = Must(Parse("6ba7b814-9dad-11d1-80b4-00c04fd430c8"))
Nil UUID // empty UUID, all zeros
)
// NewHash returns a new UUID derived from the hash of space concatenated with
// data generated by h. The hash should be at least 16 byte in length. The
// first 16 bytes of the hash are used to form the UUID. The version of the
// UUID will be the lower 4 bits of version. NewHash is used to implement
// NewMD5 and NewSHA1.
func NewHash(h hash.Hash, space UUID, data []byte, version int) UUID {
h.Reset()
h.Write(space[:])
h.Write(data)
s := h.Sum(nil)
var uuid UUID
copy(uuid[:], s)
uuid[6] = (uuid[6] & 0x0f) | uint8((version&0xf)<<4)
uuid[8] = (uuid[8] & 0x3f) | 0x80 // RFC 4122 variant
return uuid
}
// NewMD5 returns a new MD5 (Version 3) UUID based on the
// supplied name space and data. It is the same as calling:
//
// NewHash(md5.New(), space, data, 3)
func NewMD5(space UUID, data []byte) UUID {
return NewHash(md5.New(), space, data, 3)
}
// NewSHA1 returns a new SHA1 (Version 5) UUID based on the
// supplied name space and data. It is the same as calling:
//
// NewHash(sha1.New(), space, data, 5)
func NewSHA1(space UUID, data []byte) UUID {
return NewHash(sha1.New(), space, data, 5)
}

@ -0,0 +1,37 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import "fmt"
// MarshalText implements encoding.TextMarshaler.
func (uuid UUID) MarshalText() ([]byte, error) {
var js [36]byte
encodeHex(js[:], uuid)
return js[:], nil
}
// UnmarshalText implements encoding.TextUnmarshaler.
func (uuid *UUID) UnmarshalText(data []byte) error {
id, err := ParseBytes(data)
if err == nil {
*uuid = id
}
return err
}
// MarshalBinary implements encoding.BinaryMarshaler.
func (uuid UUID) MarshalBinary() ([]byte, error) {
return uuid[:], nil
}
// UnmarshalBinary implements encoding.BinaryUnmarshaler.
func (uuid *UUID) UnmarshalBinary(data []byte) error {
if len(data) != 16 {
return fmt.Errorf("invalid UUID (got %d bytes)", len(data))
}
copy(uuid[:], data)
return nil
}

@ -0,0 +1,90 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"sync"
)
var (
nodeMu sync.Mutex
ifname string // name of interface being used
nodeID [6]byte // hardware for version 1 UUIDs
zeroID [6]byte // nodeID with only 0's
)
// NodeInterface returns the name of the interface from which the NodeID was
// derived. The interface "user" is returned if the NodeID was set by
// SetNodeID.
func NodeInterface() string {
defer nodeMu.Unlock()
nodeMu.Lock()
return ifname
}
// SetNodeInterface selects the hardware address to be used for Version 1 UUIDs.
// If name is "" then the first usable interface found will be used or a random
// Node ID will be generated. If a named interface cannot be found then false
// is returned.
//
// SetNodeInterface never fails when name is "".
func SetNodeInterface(name string) bool {
defer nodeMu.Unlock()
nodeMu.Lock()
return setNodeInterface(name)
}
func setNodeInterface(name string) bool {
iname, addr := getHardwareInterface(name) // null implementation for js
if iname != "" && addr != nil {
ifname = iname
copy(nodeID[:], addr)
return true
}
// We found no interfaces with a valid hardware address. If name
// does not specify a specific interface generate a random Node ID
// (section 4.1.6)
if name == "" {
ifname = "random"
randomBits(nodeID[:])
return true
}
return false
}
// NodeID returns a slice of a copy of the current Node ID, setting the Node ID
// if not already set.
func NodeID() []byte {
defer nodeMu.Unlock()
nodeMu.Lock()
if nodeID == zeroID {
setNodeInterface("")
}
nid := nodeID
return nid[:]
}
// SetNodeID sets the Node ID to be used for Version 1 UUIDs. The first 6 bytes
// of id are used. If id is less than 6 bytes then false is returned and the
// Node ID is not set.
func SetNodeID(id []byte) bool {
if len(id) < 6 {
return false
}
defer nodeMu.Unlock()
nodeMu.Lock()
copy(nodeID[:], id)
ifname = "user"
return true
}
// NodeID returns the 6 byte node id encoded in uuid. It returns nil if uuid is
// not valid. The NodeID is only well defined for version 1 and 2 UUIDs.
func (uuid UUID) NodeID() []byte {
var node [6]byte
copy(node[:], uuid[10:])
return node[:]
}

@ -0,0 +1,12 @@
// Copyright 2017 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build js
package uuid
// getHardwareInterface returns nil values for the JS version of the code.
// This remvoves the "net" dependency, because it is not used in the browser.
// Using the "net" library inflates the size of the transpiled JS code by 673k bytes.
func getHardwareInterface(name string) (string, []byte) { return "", nil }

@ -0,0 +1,33 @@
// Copyright 2017 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !js
package uuid
import "net"
var interfaces []net.Interface // cached list of interfaces
// getHardwareInterface returns the name and hardware address of interface name.
// If name is "" then the name and hardware address of one of the system's
// interfaces is returned. If no interfaces are found (name does not exist or
// there are no interfaces) then "", nil is returned.
//
// Only addresses of at least 6 bytes are returned.
func getHardwareInterface(name string) (string, []byte) {
if interfaces == nil {
var err error
interfaces, err = net.Interfaces()
if err != nil {
return "", nil
}
}
for _, ifs := range interfaces {
if len(ifs.HardwareAddr) >= 6 && (name == "" || name == ifs.Name) {
return ifs.Name, ifs.HardwareAddr
}
}
return "", nil
}

@ -0,0 +1,59 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"database/sql/driver"
"fmt"
)
// Scan implements sql.Scanner so UUIDs can be read from databases transparently
// Currently, database types that map to string and []byte are supported. Please
// consult database-specific driver documentation for matching types.
func (uuid *UUID) Scan(src interface{}) error {
switch src := src.(type) {
case nil:
return nil
case string:
// if an empty UUID comes from a table, we return a null UUID
if src == "" {
return nil
}
// see Parse for required string format
u, err := Parse(src)
if err != nil {
return fmt.Errorf("Scan: %v", err)
}
*uuid = u
case []byte:
// if an empty UUID comes from a table, we return a null UUID
if len(src) == 0 {
return nil
}
// assumes a simple slice of bytes if 16 bytes
// otherwise attempts to parse
if len(src) != 16 {
return uuid.Scan(string(src))
}
copy((*uuid)[:], src)
default:
return fmt.Errorf("Scan: unable to scan type %T into UUID", src)
}
return nil
}
// Value implements sql.Valuer so that UUIDs can be written to databases
// transparently. Currently, UUIDs map to strings. Please consult
// database-specific driver documentation for matching types.
func (uuid UUID) Value() (driver.Value, error) {
return uuid.String(), nil
}

@ -0,0 +1,123 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
"sync"
"time"
)
// A Time represents a time as the number of 100's of nanoseconds since 15 Oct
// 1582.
type Time int64
const (
lillian = 2299160 // Julian day of 15 Oct 1582
unix = 2440587 // Julian day of 1 Jan 1970
epoch = unix - lillian // Days between epochs
g1582 = epoch * 86400 // seconds between epochs
g1582ns100 = g1582 * 10000000 // 100s of a nanoseconds between epochs
)
var (
timeMu sync.Mutex
lasttime uint64 // last time we returned
clockSeq uint16 // clock sequence for this run
timeNow = time.Now // for testing
)
// UnixTime converts t the number of seconds and nanoseconds using the Unix
// epoch of 1 Jan 1970.
func (t Time) UnixTime() (sec, nsec int64) {
sec = int64(t - g1582ns100)
nsec = (sec % 10000000) * 100
sec /= 10000000
return sec, nsec
}
// GetTime returns the current Time (100s of nanoseconds since 15 Oct 1582) and
// clock sequence as well as adjusting the clock sequence as needed. An error
// is returned if the current time cannot be determined.
func GetTime() (Time, uint16, error) {
defer timeMu.Unlock()
timeMu.Lock()
return getTime()
}
func getTime() (Time, uint16, error) {
t := timeNow()
// If we don't have a clock sequence already, set one.
if clockSeq == 0 {
setClockSequence(-1)
}
now := uint64(t.UnixNano()/100) + g1582ns100
// If time has gone backwards with this clock sequence then we
// increment the clock sequence
if now <= lasttime {
clockSeq = ((clockSeq + 1) & 0x3fff) | 0x8000
}
lasttime = now
return Time(now), clockSeq, nil
}
// ClockSequence returns the current clock sequence, generating one if not
// already set. The clock sequence is only used for Version 1 UUIDs.
//
// The uuid package does not use global static storage for the clock sequence or
// the last time a UUID was generated. Unless SetClockSequence is used, a new
// random clock sequence is generated the first time a clock sequence is
// requested by ClockSequence, GetTime, or NewUUID. (section 4.2.1.1)
func ClockSequence() int {
defer timeMu.Unlock()
timeMu.Lock()
return clockSequence()
}
func clockSequence() int {
if clockSeq == 0 {
setClockSequence(-1)
}
return int(clockSeq & 0x3fff)
}
// SetClockSequence sets the clock sequence to the lower 14 bits of seq. Setting to
// -1 causes a new sequence to be generated.
func SetClockSequence(seq int) {
defer timeMu.Unlock()
timeMu.Lock()
setClockSequence(seq)
}
func setClockSequence(seq int) {
if seq == -1 {
var b [2]byte
randomBits(b[:]) // clock sequence
seq = int(b[0])<<8 | int(b[1])
}
oldSeq := clockSeq
clockSeq = uint16(seq&0x3fff) | 0x8000 // Set our variant
if oldSeq != clockSeq {
lasttime = 0
}
}
// Time returns the time in 100s of nanoseconds since 15 Oct 1582 encoded in
// uuid. The time is only defined for version 1 and 2 UUIDs.
func (uuid UUID) Time() Time {
time := int64(binary.BigEndian.Uint32(uuid[0:4]))
time |= int64(binary.BigEndian.Uint16(uuid[4:6])) << 32
time |= int64(binary.BigEndian.Uint16(uuid[6:8])&0xfff) << 48
return Time(time)
}
// ClockSequence returns the clock sequence encoded in uuid.
// The clock sequence is only well defined for version 1 and 2 UUIDs.
func (uuid UUID) ClockSequence() int {
return int(binary.BigEndian.Uint16(uuid[8:10])) & 0x3fff
}

@ -0,0 +1,43 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"io"
)
// randomBits completely fills slice b with random data.
func randomBits(b []byte) {
if _, err := io.ReadFull(rander, b); err != nil {
panic(err.Error()) // rand should never fail
}
}
// xvalues returns the value of a byte as a hexadecimal digit or 255.
var xvalues = [256]byte{
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 255, 255, 255, 255,
255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 10, 11, 12, 13, 14, 15, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
}
// xtob converts hex characters x1 and x2 into a byte.
func xtob(x1, x2 byte) (byte, bool) {
b1 := xvalues[x1]
b2 := xvalues[x2]
return (b1 << 4) | b2, b1 != 255 && b2 != 255
}

@ -0,0 +1,245 @@
// Copyright 2018 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"bytes"
"crypto/rand"
"encoding/hex"
"errors"
"fmt"
"io"
"strings"
)
// A UUID is a 128 bit (16 byte) Universal Unique IDentifier as defined in RFC
// 4122.
type UUID [16]byte
// A Version represents a UUID's version.
type Version byte
// A Variant represents a UUID's variant.
type Variant byte
// Constants returned by Variant.
const (
Invalid = Variant(iota) // Invalid UUID
RFC4122 // The variant specified in RFC4122
Reserved // Reserved, NCS backward compatibility.
Microsoft // Reserved, Microsoft Corporation backward compatibility.
Future // Reserved for future definition.
)
var rander = rand.Reader // random function
// Parse decodes s into a UUID or returns an error. Both the standard UUID
// forms of xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx and
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx are decoded as well as the
// Microsoft encoding {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx} and the raw hex
// encoding: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.
func Parse(s string) (UUID, error) {
var uuid UUID
switch len(s) {
// xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
case 36:
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
case 36 + 9:
if strings.ToLower(s[:9]) != "urn:uuid:" {
return uuid, fmt.Errorf("invalid urn prefix: %q", s[:9])
}
s = s[9:]
// {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}
case 36 + 2:
s = s[1:]
// xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
case 32:
var ok bool
for i := range uuid {
uuid[i], ok = xtob(s[i*2], s[i*2+1])
if !ok {
return uuid, errors.New("invalid UUID format")
}
}
return uuid, nil
default:
return uuid, fmt.Errorf("invalid UUID length: %d", len(s))
}
// s is now at least 36 bytes long
// it must be of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
if s[8] != '-' || s[13] != '-' || s[18] != '-' || s[23] != '-' {
return uuid, errors.New("invalid UUID format")
}
for i, x := range [16]int{
0, 2, 4, 6,
9, 11,
14, 16,
19, 21,
24, 26, 28, 30, 32, 34} {
v, ok := xtob(s[x], s[x+1])
if !ok {
return uuid, errors.New("invalid UUID format")
}
uuid[i] = v
}
return uuid, nil
}
// ParseBytes is like Parse, except it parses a byte slice instead of a string.
func ParseBytes(b []byte) (UUID, error) {
var uuid UUID
switch len(b) {
case 36: // xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
case 36 + 9: // urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
if !bytes.Equal(bytes.ToLower(b[:9]), []byte("urn:uuid:")) {
return uuid, fmt.Errorf("invalid urn prefix: %q", b[:9])
}
b = b[9:]
case 36 + 2: // {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}
b = b[1:]
case 32: // xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
var ok bool
for i := 0; i < 32; i += 2 {
uuid[i/2], ok = xtob(b[i], b[i+1])
if !ok {
return uuid, errors.New("invalid UUID format")
}
}
return uuid, nil
default:
return uuid, fmt.Errorf("invalid UUID length: %d", len(b))
}
// s is now at least 36 bytes long
// it must be of the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
if b[8] != '-' || b[13] != '-' || b[18] != '-' || b[23] != '-' {
return uuid, errors.New("invalid UUID format")
}
for i, x := range [16]int{
0, 2, 4, 6,
9, 11,
14, 16,
19, 21,
24, 26, 28, 30, 32, 34} {
v, ok := xtob(b[x], b[x+1])
if !ok {
return uuid, errors.New("invalid UUID format")
}
uuid[i] = v
}
return uuid, nil
}
// MustParse is like Parse but panics if the string cannot be parsed.
// It simplifies safe initialization of global variables holding compiled UUIDs.
func MustParse(s string) UUID {
uuid, err := Parse(s)
if err != nil {
panic(`uuid: Parse(` + s + `): ` + err.Error())
}
return uuid
}
// FromBytes creates a new UUID from a byte slice. Returns an error if the slice
// does not have a length of 16. The bytes are copied from the slice.
func FromBytes(b []byte) (uuid UUID, err error) {
err = uuid.UnmarshalBinary(b)
return uuid, err
}
// Must returns uuid if err is nil and panics otherwise.
func Must(uuid UUID, err error) UUID {
if err != nil {
panic(err)
}
return uuid
}
// String returns the string form of uuid, xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
// , or "" if uuid is invalid.
func (uuid UUID) String() string {
var buf [36]byte
encodeHex(buf[:], uuid)
return string(buf[:])
}
// URN returns the RFC 2141 URN form of uuid,
// urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, or "" if uuid is invalid.
func (uuid UUID) URN() string {
var buf [36 + 9]byte
copy(buf[:], "urn:uuid:")
encodeHex(buf[9:], uuid)
return string(buf[:])
}
func encodeHex(dst []byte, uuid UUID) {
hex.Encode(dst, uuid[:4])
dst[8] = '-'
hex.Encode(dst[9:13], uuid[4:6])
dst[13] = '-'
hex.Encode(dst[14:18], uuid[6:8])
dst[18] = '-'
hex.Encode(dst[19:23], uuid[8:10])
dst[23] = '-'
hex.Encode(dst[24:], uuid[10:])
}
// Variant returns the variant encoded in uuid.
func (uuid UUID) Variant() Variant {
switch {
case (uuid[8] & 0xc0) == 0x80:
return RFC4122
case (uuid[8] & 0xe0) == 0xc0:
return Microsoft
case (uuid[8] & 0xe0) == 0xe0:
return Future
default:
return Reserved
}
}
// Version returns the version of uuid.
func (uuid UUID) Version() Version {
return Version(uuid[6] >> 4)
}
func (v Version) String() string {
if v > 15 {
return fmt.Sprintf("BAD_VERSION_%d", v)
}
return fmt.Sprintf("VERSION_%d", v)
}
func (v Variant) String() string {
switch v {
case RFC4122:
return "RFC4122"
case Reserved:
return "Reserved"
case Microsoft:
return "Microsoft"
case Future:
return "Future"
case Invalid:
return "Invalid"
}
return fmt.Sprintf("BadVariant%d", int(v))
}
// SetRand sets the random number generator to r, which implements io.Reader.
// If r.Read returns an error when the package requests random data then
// a panic will be issued.
//
// Calling SetRand with nil sets the random number generator to the default
// generator.
func SetRand(r io.Reader) {
if r == nil {
rander = rand.Reader
return
}
rander = r
}

@ -0,0 +1,44 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import (
"encoding/binary"
)
// NewUUID returns a Version 1 UUID based on the current NodeID and clock
// sequence, and the current time. If the NodeID has not been set by SetNodeID
// or SetNodeInterface then it will be set automatically. If the NodeID cannot
// be set NewUUID returns nil. If clock sequence has not been set by
// SetClockSequence then it will be set automatically. If GetTime fails to
// return the current NewUUID returns nil and an error.
//
// In most cases, New should be used.
func NewUUID() (UUID, error) {
nodeMu.Lock()
if nodeID == zeroID {
setNodeInterface("")
}
nodeMu.Unlock()
var uuid UUID
now, seq, err := GetTime()
if err != nil {
return uuid, err
}
timeLow := uint32(now & 0xffffffff)
timeMid := uint16((now >> 32) & 0xffff)
timeHi := uint16((now >> 48) & 0x0fff)
timeHi |= 0x1000 // Version 1
binary.BigEndian.PutUint32(uuid[0:], timeLow)
binary.BigEndian.PutUint16(uuid[4:], timeMid)
binary.BigEndian.PutUint16(uuid[6:], timeHi)
binary.BigEndian.PutUint16(uuid[8:], seq)
copy(uuid[10:], nodeID[:])
return uuid, nil
}

@ -0,0 +1,38 @@
// Copyright 2016 Google Inc. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package uuid
import "io"
// New creates a new random UUID or panics. New is equivalent to
// the expression
//
// uuid.Must(uuid.NewRandom())
func New() UUID {
return Must(NewRandom())
}
// NewRandom returns a Random (Version 4) UUID.
//
// The strength of the UUIDs is based on the strength of the crypto/rand
// package.
//
// A note about uniqueness derived from the UUID Wikipedia entry:
//
// Randomly generated UUIDs have 122 random bits. One's annual risk of being
// hit by a meteorite is estimated to be one chance in 17 billion, that
// means the probability is about 0.00000000006 (6 × 1011),
// equivalent to the odds of creating a few tens of trillions of UUIDs in a
// year and having one duplicate.
func NewRandom() (UUID, error) {
var uuid UUID
_, err := io.ReadFull(rander, uuid[:])
if err != nil {
return Nil, err
}
uuid[6] = (uuid[6] & 0x0f) | 0x40 // Version 4
uuid[8] = (uuid[8] & 0x3f) | 0x80 // Variant is 10
return uuid, nil
}

@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

@ -0,0 +1,49 @@
package cidr
import (
"fmt"
"net"
"github.com/apparentlymart/go-cidr/cidr"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
// HostFunc is a function that calculates a full host IP address within a given
// IP network address prefix.
var HostFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "prefix",
Type: cty.String,
},
{
Name: "hostnum",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var hostNum int
if err := gocty.FromCtyValue(args[1], &hostNum); err != nil {
return cty.UnknownVal(cty.String), err
}
_, network, err := net.ParseCIDR(args[0].AsString())
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("invalid CIDR expression: %s", err)
}
ip, err := cidr.Host(network, hostNum)
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(ip.String()), nil
},
})
// Host calculates a full host IP address within a given IP network address prefix.
func Host(prefix, hostnum cty.Value) (cty.Value, error) {
return HostFunc.Call([]cty.Value{prefix, hostnum})
}

@ -0,0 +1,34 @@
package cidr
import (
"fmt"
"net"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// NetmaskFunc is a function that converts an IPv4 address prefix given in CIDR
// notation into a subnet mask address.
var NetmaskFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "prefix",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
_, network, err := net.ParseCIDR(args[0].AsString())
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("invalid CIDR expression: %s", err)
}
return cty.StringVal(net.IP(network.Mask).String()), nil
},
})
// Netmask converts an IPv4 address prefix given in CIDR notation into a subnet mask address.
func Netmask(prefix cty.Value) (cty.Value, error) {
return NetmaskFunc.Call([]cty.Value{prefix})
}

@ -0,0 +1,66 @@
package cidr
import (
"fmt"
"net"
"github.com/apparentlymart/go-cidr/cidr"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
// SubnetFunc is a function that calculates a subnet address within a given
// IP network address prefix.
var SubnetFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "prefix",
Type: cty.String,
},
{
Name: "newbits",
Type: cty.Number,
},
{
Name: "netnum",
Type: cty.Number,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var newbits int
if err := gocty.FromCtyValue(args[1], &newbits); err != nil {
return cty.UnknownVal(cty.String), err
}
var netnum int
if err := gocty.FromCtyValue(args[2], &netnum); err != nil {
return cty.UnknownVal(cty.String), err
}
_, network, err := net.ParseCIDR(args[0].AsString())
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("invalid CIDR expression: %s", err)
}
// For portability with 32-bit systems where the subnet number will be
// a 32-bit int, we only allow extension of 32 bits in one call even if
// we're running on a 64-bit machine. (Of course, this is significant
// only for IPv6.)
if newbits > 32 {
return cty.UnknownVal(cty.String), fmt.Errorf("may not extend prefix by more than 32 bits")
}
newNetwork, err := cidr.Subnet(network, newbits, netnum)
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(newNetwork.String()), nil
},
})
// Subnet calculates a subnet address within a given IP network address prefix.
func Subnet(prefix, newbits, netnum cty.Value) (cty.Value, error) {
return SubnetFunc.Call([]cty.Value{prefix, newbits, netnum})
}

@ -0,0 +1,99 @@
package cidr
import (
"net"
"github.com/apparentlymart/go-cidr/cidr"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
)
// SubnetsFunc is similar to SubnetFunc but calculates many consecutive subnet
// addresses at once, rather than just a single subnet extension.
var SubnetsFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "prefix",
Type: cty.String,
},
},
VarParam: &function.Parameter{
Name: "newbits",
Type: cty.Number,
},
Type: function.StaticReturnType(cty.List(cty.String)),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
_, network, err := net.ParseCIDR(args[0].AsString())
if err != nil {
return cty.UnknownVal(cty.String), function.NewArgErrorf(0, "invalid CIDR expression: %s", err)
}
startPrefixLen, _ := network.Mask.Size()
prefixLengthArgs := args[1:]
if len(prefixLengthArgs) == 0 {
return cty.ListValEmpty(cty.String), nil
}
var firstLength int
if err := gocty.FromCtyValue(prefixLengthArgs[0], &firstLength); err != nil {
return cty.UnknownVal(cty.String), function.NewArgError(1, err)
}
firstLength += startPrefixLen
retVals := make([]cty.Value, len(prefixLengthArgs))
current, _ := cidr.PreviousSubnet(network, firstLength)
for i, lengthArg := range prefixLengthArgs {
var length int
if err := gocty.FromCtyValue(lengthArg, &length); err != nil {
return cty.UnknownVal(cty.String), function.NewArgError(i+1, err)
}
if length < 1 {
return cty.UnknownVal(cty.String), function.NewArgErrorf(i+1, "must extend prefix by at least one bit")
}
// For portability with 32-bit systems where the subnet number
// will be a 32-bit int, we only allow extension of 32 bits in
// one call even if we're running on a 64-bit machine.
// (Of course, this is significant only for IPv6.)
if length > 32 {
return cty.UnknownVal(cty.String), function.NewArgErrorf(i+1, "may not extend prefix by more than 32 bits")
}
length += startPrefixLen
if length > (len(network.IP) * 8) {
protocol := "IP"
switch len(network.IP) * 8 {
case 32:
protocol = "IPv4"
case 128:
protocol = "IPv6"
}
return cty.UnknownVal(cty.String), function.NewArgErrorf(i+1, "would extend prefix to %d bits, which is too long for an %s address", length, protocol)
}
next, rollover := cidr.NextSubnet(current, length)
if rollover || !network.Contains(next.IP) {
// If we run out of suffix bits in the base CIDR prefix then
// NextSubnet will start incrementing the prefix bits, which
// we don't allow because it would then allocate addresses
// outside of the caller's given prefix.
return cty.UnknownVal(cty.String), function.NewArgErrorf(i+1, "not enough remaining address space for a subnet with a prefix of %d bits after %s", length, current.String())
}
current = next
retVals[i] = cty.StringVal(current.String())
}
return cty.ListVal(retVals), nil
},
})
// Subnets calculates a sequence of consecutive subnet prefixes that may be of
// different prefix lengths under a common base prefix.
func Subnets(prefix cty.Value, newbits ...cty.Value) (cty.Value, error) {
args := make([]cty.Value, len(newbits)+1)
args[0] = prefix
copy(args[1:], newbits)
return SubnetsFunc.Call(args)
}

@ -0,0 +1,59 @@
package crypto
import (
"fmt"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
"github.com/zclconf/go-cty/cty/gocty"
"golang.org/x/crypto/bcrypt"
)
// BcryptFunc is a function that computes a hash of the given string using the
// Blowfish cipher.
var BcryptFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
VarParam: &function.Parameter{
Name: "cost",
Type: cty.Number,
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
defaultCost := 10
if len(args) > 1 {
var val int
if err := gocty.FromCtyValue(args[1], &val); err != nil {
return cty.UnknownVal(cty.String), err
}
defaultCost = val
}
if len(args) > 2 {
return cty.UnknownVal(cty.String), fmt.Errorf("bcrypt() takes no more than two arguments")
}
input := args[0].AsString()
out, err := bcrypt.GenerateFromPassword([]byte(input), defaultCost)
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("error occured generating password %s", err.Error())
}
return cty.StringVal(string(out)), nil
},
})
// Bcrypt computes a hash of the given string using the Blowfish cipher,
// returning a string in the Modular Crypt Format usually expected in the
// shadow password file on many Unix systems.
func Bcrypt(str cty.Value, cost ...cty.Value) (cty.Value, error) {
args := make([]cty.Value, len(cost)+1)
args[0] = str
copy(args[1:], cost)
return BcryptFunc.Call(args)
}

@ -0,0 +1,27 @@
package crypto
import (
"hash"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
func makeStringHashFunction(hf func() hash.Hash, enc func([]byte) string) function.Function {
return function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
s := args[0].AsString()
h := hf()
h.Write([]byte(s))
rv := enc(h.Sum(nil))
return cty.StringVal(rv), nil
},
})
}

@ -0,0 +1,18 @@
package crypto
import (
"crypto/md5"
"encoding/hex"
"github.com/zclconf/go-cty/cty"
)
// Md5Func is a function that computes the MD5 hash of a given string and
// encodes it with hexadecimal digits.
var Md5Func = makeStringHashFunction(md5.New, hex.EncodeToString)
// Md5 computes the MD5 hash of a given string and encodes it with hexadecimal
// digits.
func Md5(str cty.Value) (cty.Value, error) {
return Md5Func.Call([]cty.Value{str})
}

@ -0,0 +1,64 @@
package crypto
import (
"crypto/rsa"
"crypto/x509"
"encoding/base64"
"encoding/pem"
"fmt"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// RsaDecryptFunc is a function that decrypts an RSA-encrypted ciphertext.
var RsaDecryptFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "ciphertext",
Type: cty.String,
},
{
Name: "privatekey",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
s := args[0].AsString()
key := args[1].AsString()
b, err := base64.StdEncoding.DecodeString(s)
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("failed to decode input %q: cipher text must be base64-encoded", s)
}
block, _ := pem.Decode([]byte(key))
if block == nil {
return cty.UnknownVal(cty.String), fmt.Errorf("failed to parse key: no key found")
}
if block.Headers["Proc-Type"] == "4,ENCRYPTED" {
return cty.UnknownVal(cty.String), fmt.Errorf(
"failed to parse key: password protected keys are not supported. Please decrypt the key prior to use",
)
}
x509Key, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return cty.UnknownVal(cty.String), err
}
out, err := rsa.DecryptPKCS1v15(nil, x509Key, b)
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(string(out)), nil
},
})
// RsaDecrypt decrypts an RSA-encrypted ciphertext, returning the corresponding
// cleartext.
func RsaDecrypt(ciphertext, privatekey cty.Value) (cty.Value, error) {
return RsaDecryptFunc.Call([]cty.Value{ciphertext, privatekey})
}

@ -0,0 +1,40 @@
package crypto
import (
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/hex"
"github.com/zclconf/go-cty/cty"
)
// Sha1Func is a function that computes the SHA1 hash of a given string and
// encodes it with hexadecimal digits.
var Sha1Func = makeStringHashFunction(sha1.New, hex.EncodeToString)
// Sha256Func is a function that computes the SHA256 hash of a given string and
// encodes it with hexadecimal digits.
var Sha256Func = makeStringHashFunction(sha256.New, hex.EncodeToString)
// Sha512Func is a function that computes the SHA512 hash of a given string and
// encodes it with hexadecimal digits.
var Sha512Func = makeStringHashFunction(sha512.New, hex.EncodeToString)
// Sha1 computes the SHA1 hash of a given string and encodes it with
// hexadecimal digits.
func Sha1(str cty.Value) (cty.Value, error) {
return Sha1Func.Call([]cty.Value{str})
}
// Sha256 computes the SHA256 hash of a given string and encodes it with
// hexadecimal digits.
func Sha256(str cty.Value) (cty.Value, error) {
return Sha256Func.Call([]cty.Value{str})
}
// Sha512 computes the SHA512 hash of a given string and encodes it with
// hexadecimal digits.
func Sha512(str cty.Value) (cty.Value, error) {
return Sha512Func.Call([]cty.Value{str})
}

@ -0,0 +1,71 @@
package encoding
import (
"encoding/base64"
"fmt"
"log"
"unicode/utf8"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// Base64DecodeFunc is a function that decodes a string containing a base64 sequence.
var Base64DecodeFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
s := args[0].AsString()
sDec, err := base64.StdEncoding.DecodeString(s)
if err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("failed to decode base64 data '%s'", s)
}
if !utf8.Valid([]byte(sDec)) {
log.Printf("[DEBUG] the result of decoding the the provided string is not valid UTF-8: %s", sDec)
return cty.UnknownVal(cty.String), fmt.Errorf("the result of decoding the the provided string is not valid UTF-8")
}
return cty.StringVal(string(sDec)), nil
},
})
// Base64EncodeFunc is a function that encodes a string to a base64 sequence.
var Base64EncodeFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return cty.StringVal(base64.StdEncoding.EncodeToString([]byte(args[0].AsString()))), nil
},
})
// Base64Decode decodes a string containing a base64 sequence.
//
// Terraform uses the "standard" Base64 alphabet as defined in RFC 4648 section 4.
//
// Strings in the Terraform language are sequences of unicode characters rather
// than bytes, so this function will also interpret the resulting bytes as
// UTF-8. If the bytes after Base64 decoding are _not_ valid UTF-8, this function
// produces an error.
func Base64Decode(str cty.Value) (cty.Value, error) {
return Base64DecodeFunc.Call([]cty.Value{str})
}
// Base64Encode applies Base64 encoding to a string.
//
// Terraform uses the "standard" Base64 alphabet as defined in RFC 4648 section 4.
//
// Strings in the Terraform language are sequences of unicode characters rather
// than bytes, so this function will first encode the characters from the string
// as UTF-8, and then apply Base64 encoding to the result.
func Base64Encode(str cty.Value) (cty.Value, error) {
return Base64EncodeFunc.Call([]cty.Value{str})
}

@ -0,0 +1,34 @@
package encoding
import (
"net/url"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// URLEncodeFunc is a function that applies URL encoding to a given string.
var URLEncodeFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "str",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return cty.StringVal(url.QueryEscape(args[0].AsString())), nil
},
})
// URLEncode applies URL encoding to a given string.
//
// This function identifies characters in the given string that would have a
// special meaning when included as a query string argument in a URL and
// escapes them using RFC 3986 "percent encoding".
//
// If the given string contains non-ASCII characters, these are first encoded as
// UTF-8 and then percent encoding is applied separately to each UTF-8 byte.
func URLEncode(str cty.Value) (cty.Value, error) {
return URLEncodeFunc.Call([]cty.Value{str})
}

@ -0,0 +1,28 @@
package uuid
import (
"github.com/google/uuid"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var V4Func = function.New(&function.Spec{
Params: []function.Parameter{},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
uuid, err := uuid.NewRandom()
if err != nil {
return cty.UnknownVal(cty.String), err
}
return cty.StringVal(uuid.String()), nil
},
})
// V4 generates and returns a Type-4 UUID in the standard hexadecimal string
// format.
//
// This is not a "pure" function: it will generate a different result for each
// call.
func V4() (cty.Value, error) {
return V4Func.Call(nil)
}

@ -0,0 +1,51 @@
package uuid
import (
"fmt"
uuidv5 "github.com/google/uuid"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
var V5Func = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "namespace",
Type: cty.String,
},
{
Name: "name",
Type: cty.String,
},
},
Type: function.StaticReturnType(cty.String),
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
var namespace uuidv5.UUID
switch {
case args[0].AsString() == "dns":
namespace = uuidv5.NameSpaceDNS
case args[0].AsString() == "url":
namespace = uuidv5.NameSpaceURL
case args[0].AsString() == "oid":
namespace = uuidv5.NameSpaceOID
case args[0].AsString() == "x500":
namespace = uuidv5.NameSpaceX500
default:
if namespace, err = uuidv5.Parse(args[0].AsString()); err != nil {
return cty.UnknownVal(cty.String), fmt.Errorf("uuidv5() doesn't support namespace %s (%v)", args[0].AsString(), err)
}
}
val := args[1].AsString()
return cty.StringVal(uuidv5.NewSHA1(namespace, []byte(val)).String()), nil
},
})
// V5 generates and returns a Type-5 UUID in the standard hexadecimal
// string format.
//
// This is not a "pure" function: it will generate a different result for each
// call.
func V5(namespace cty.Value, name cty.Value) (cty.Value, error) {
return V5Func.Call([]cty.Value{namespace, name})
}

@ -1,5 +1,52 @@
# HCL Changelog # HCL Changelog
## v2.8.1 (Unreleased)
### Bugs Fixed
* hclsyntax: Fix panic when expanding marked function arguments. ([#429](https://github.com/hashicorp/hcl/pull/429))
* hclsyntax: Error when attempting to use a marked value as an object key. ([#434](https://github.com/hashicorp/hcl/pull/434))
* hclsyntax: Error when attempting to use a marked value as an object key in expressions. ([#433](https://github.com/hashicorp/hcl/pull/433))
## v2.8.0 (December 7, 2020)
### Enhancements
* hclsyntax: Expression grouping parentheses will now be reflected by an explicit node in the AST, whereas before they were only considered during parsing. ([#426](https://github.com/hashicorp/hcl/pull/426))
### Bugs Fixed
* hclwrite: The parser will now correctly include the `(` and `)` tokens when an expression is surrounded by parentheses. Previously it would incorrectly recognize those tokens as being extraneous tokens outside of the expression. ([#426](https://github.com/hashicorp/hcl/pull/426))
* hclwrite: The formatter will now remove (rather than insert) spaces between the `!` (unary boolean "not") operator and its subsequent operand. ([#403](https://github.com/hashicorp/hcl/pull/403))
* hclsyntax: Unmark conditional values in expressions before checking their truthfulness ([#427](https://github.com/hashicorp/hcl/pull/427))
## v2.7.2 (November 30, 2020)
### Bugs Fixed
* gohcl: Fix panic when decoding into type containing value slices. ([#335](https://github.com/hashicorp/hcl/pull/335))
* hclsyntax: The unusual expression `null[*]` was previously always returning an unknown value, even though the rules for `[*]` normally call for it to return an empty tuple when applied to a null. As well as being a surprising result, it was particularly problematic because it violated the rule that a calling application may assume that an expression result will always be known unless the application itself introduces unknown values via the evaluation context. `null[*]` will now produce an empty tuple. ([#416](https://github.com/hashicorp/hcl/pull/416))
* hclsyntax: Fix panic when traversing a list, tuple, or map with cty "marks" ([#424](https://github.com/hashicorp/hcl/pull/424))
## v2.7.1 (November 18, 2020)
### Bugs Fixed
* hclwrite: Correctly handle blank quoted string block labels, instead of dropping them ([#422](https://github.com/hashicorp/hcl/pull/422))
## v2.7.0 (October 14, 2020)
### Enhancements
* json: There is a new function `ParseWithStartPos`, which allows overriding the starting position for parsing in case the given JSON bytes are a fragment of a larger document, such as might happen when decoding with `encoding/json` into a `json.RawMessage`. ([#389](https://github.com/hashicorp/hcl/pull/389))
* json: There is a new function `ParseExpression`, which allows parsing a JSON string directly in expression mode, whereas previously it was only possible to parse a JSON string in body mode. ([#381](https://github.com/hashicorp/hcl/pull/381))
* hclwrite: `Block` type now supports `SetType` and `SetLabels`, allowing surgical changes to the type and labels of an existing block without having to reconstruct the entire block. ([#340](https://github.com/hashicorp/hcl/pull/340))
### Bugs Fixed
* hclsyntax: Fix confusing error message for bitwise OR operator ([#380](https://github.com/hashicorp/hcl/pull/380))
* hclsyntax: Several bug fixes for using HCL with values containing cty "marks" ([#404](https://github.com/hashicorp/hcl/pull/404), [#406](https://github.com/hashicorp/hcl/pull/404), [#407](https://github.com/hashicorp/hcl/pull/404))
## v2.6.0 (June 4, 2020) ## v2.6.0 (June 4, 2020)
### Enhancements ### Enhancements

@ -33,11 +33,25 @@ package main
import ( import (
"log" "log"
"github.com/hashicorp/hcl/v2/hclsimple" "github.com/hashicorp/hcl/v2/hclsimple"
) )
type Config struct { type Config struct {
LogLevel string `hcl:"log_level"` IOMode string `hcl:"io_mode"`
Service ServiceConfig `hcl:"service,block"`
}
type ServiceConfig struct {
Protocol string `hcl:"protocol,label"`
Type string `hcl:"type,label"`
ListenAddr string `hcl:"listen_addr"`
Processes []ProcessConfig `hcl:"process,block"`
}
type ProcessConfig struct {
Type string `hcl:"type,label"`
Command []string `hcl:"command"`
} }
func main() { func main() {

@ -1,13 +0,0 @@
build: off
clone_folder: c:\gopath\src\github.com\hashicorp\hcl
environment:
GOPATH: c:\gopath
GO111MODULE: on
GOPROXY: https://goproxy.io
stack: go 1.12
test_script:
- go test ./...

@ -0,0 +1,44 @@
# "Try" and "can" functions
This Go package contains two `cty` functions intended for use in an
`hcl.EvalContext` when evaluating HCL native syntax expressions.
The first function `try` attempts to evaluate each of its argument expressions
in order until one produces a result without any errors.
```hcl
try(non_existent_variable, 2) # returns 2
```
If none of the expressions succeed, the function call fails with all of the
errors it encountered.
The second function `can` is similar except that it ignores the result of
the given expression altogether and simply returns `true` if the expression
produced a successful result or `false` if it produced errors.
Both of these are primarily intended for working with deep data structures
which might not have a dependable shape. For example, we can use `try` to
attempt to fetch a value from deep inside a data structure but produce a
default value if any step of the traversal fails:
```hcl
result = try(foo.deep[0].lots.of["traversals"], null)
```
The final result to `try` should generally be some sort of constant value that
will always evaluate successfully.
## Using these functions
Languages built on HCL can make `try` and `can` available to user code by
exporting them in the `hcl.EvalContext` used for expression evaluation:
```go
ctx := &hcl.EvalContext{
Functions: map[string]function.Function{
"try": tryfunc.TryFunc,
"can": tryfunc.CanFunc,
},
}
```

@ -0,0 +1,150 @@
// Package tryfunc contains some optional functions that can be exposed in
// HCL-based languages to allow authors to test whether a particular expression
// can succeed and take dynamic action based on that result.
//
// These functions are implemented in terms of the customdecode extension from
// the sibling directory "customdecode", and so they are only useful when
// used within an HCL EvalContext. Other systems using cty functions are
// unlikely to support the HCL-specific "customdecode" extension.
package tryfunc
import (
"errors"
"fmt"
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/ext/customdecode"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/function"
)
// TryFunc is a variadic function that tries to evaluate all of is arguments
// in sequence until one succeeds, in which case it returns that result, or
// returns an error if none of them succeed.
var TryFunc function.Function
// CanFunc tries to evaluate the expression given in its first argument.
var CanFunc function.Function
func init() {
TryFunc = function.New(&function.Spec{
VarParam: &function.Parameter{
Name: "expressions",
Type: customdecode.ExpressionClosureType,
},
Type: func(args []cty.Value) (cty.Type, error) {
v, err := try(args)
if err != nil {
return cty.NilType, err
}
return v.Type(), nil
},
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return try(args)
},
})
CanFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "expression",
Type: customdecode.ExpressionClosureType,
},
},
Type: function.StaticReturnType(cty.Bool),
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
return can(args[0])
},
})
}
func try(args []cty.Value) (cty.Value, error) {
if len(args) == 0 {
return cty.NilVal, errors.New("at least one argument is required")
}
// We'll collect up all of the diagnostics we encounter along the way
// and report them all if none of the expressions succeed, so that the
// user might get some hints on how to make at least one succeed.
var diags hcl.Diagnostics
for _, arg := range args {
closure := customdecode.ExpressionClosureFromVal(arg)
if dependsOnUnknowns(closure.Expression, closure.EvalContext) {
// We can't safely decide if this expression will succeed yet,
// and so our entire result must be unknown until we have
// more information.
return cty.DynamicVal, nil
}
v, moreDiags := closure.Value()
diags = append(diags, moreDiags...)
if moreDiags.HasErrors() {
continue // try the next one, if there is one to try
}
return v, nil // ignore any accumulated diagnostics if one succeeds
}
// If we fall out here then none of the expressions succeeded, and so
// we must have at least one diagnostic and we'll return all of them
// so that the user can see the errors related to whichever one they
// were expecting to have succeeded in this case.
//
// Because our function must return a single error value rather than
// diagnostics, we'll construct a suitable error message string
// that will make sense in the context of the function call failure
// diagnostic HCL will eventually wrap this in.
var buf strings.Builder
buf.WriteString("no expression succeeded:\n")
for _, diag := range diags {
if diag.Subject != nil {
buf.WriteString(fmt.Sprintf("- %s (at %s)\n %s\n", diag.Summary, diag.Subject, diag.Detail))
} else {
buf.WriteString(fmt.Sprintf("- %s\n %s\n", diag.Summary, diag.Detail))
}
}
buf.WriteString("\nAt least one expression must produce a successful result")
return cty.NilVal, errors.New(buf.String())
}
func can(arg cty.Value) (cty.Value, error) {
closure := customdecode.ExpressionClosureFromVal(arg)
if dependsOnUnknowns(closure.Expression, closure.EvalContext) {
// Can't decide yet, then.
return cty.UnknownVal(cty.Bool), nil
}
_, diags := closure.Value()
if diags.HasErrors() {
return cty.False, nil
}
return cty.True, nil
}
// dependsOnUnknowns returns true if any of the variables that the given
// expression might access are unknown values or contain unknown values.
//
// This is a conservative result that prefers to return true if there's any
// chance that the expression might derive from an unknown value during its
// evaluation; it is likely to produce false-positives for more complex
// expressions involving deep data structures.
func dependsOnUnknowns(expr hcl.Expression, ctx *hcl.EvalContext) bool {
for _, traversal := range expr.Variables() {
val, diags := traversal.TraverseAbs(ctx)
if diags.HasErrors() {
// If the traversal returned a definitive error then it must
// not traverse through any unknowns.
continue
}
if !val.IsWhollyKnown() {
// The value will be unknown if either it refers directly to
// an unknown value or if the traversal moves through an unknown
// collection. We're using IsWhollyKnown, so this also catches
// situations where the traversal refers to a compound data
// structure that contains any unknown values. That's important,
// because during evaluation the expression might evaluate more
// deeply into this structure and encounter the unknowns.
return true
}
}
return false
}

@ -0,0 +1,135 @@
# HCL Type Expressions Extension
This HCL extension defines a convention for describing HCL types using function
call and variable reference syntax, allowing configuration formats to include
type information provided by users.
The type syntax is processed statically from a hcl.Expression, so it cannot
use any of the usual language operators. This is similar to type expressions
in statically-typed programming languages.
```hcl
variable "example" {
type = list(string)
}
```
The extension is built using the `hcl.ExprAsKeyword` and `hcl.ExprCall`
functions, and so it relies on the underlying syntax to define how "keyword"
and "call" are interpreted. The above shows how they are interpreted in
the HCL native syntax, while the following shows the same information
expressed in JSON:
```json
{
"variable": {
"example": {
"type": "list(string)"
}
}
}
```
Notice that since we have additional contextual information that we intend
to allow only calls and keywords the JSON syntax is able to parse the given
string directly as an expression, rather than as a template as would be
the case for normal expression evaluation.
For more information, see [the godoc reference](http://godoc.org/github.com/hashicorp/hcl/v2/ext/typeexpr).
## Type Expression Syntax
When expressed in the native syntax, the following expressions are permitted
in a type expression:
* `string` - string
* `bool` - boolean
* `number` - number
* `any` - `cty.DynamicPseudoType` (in function `TypeConstraint` only)
* `list(<type_expr>)` - list of the type given as an argument
* `set(<type_expr>)` - set of the type given as an argument
* `map(<type_expr>)` - map of the type given as an argument
* `tuple([<type_exprs...>])` - tuple with the element types given in the single list argument
* `object({<attr_name>=<type_expr>, ...}` - object with the attributes and corresponding types given in the single map argument
For example:
* `list(string)`
* `object({name=string,age=number})`
* `map(object({name=string,age=number}))`
Note that the object constructor syntax is not fully-general for all possible
object types because it requires the attribute names to be valid identifiers.
In practice it is expected that any time an object type is being fixed for
type checking it will be one that has identifiers as its attributes; object
types with weird attributes generally show up only from arbitrary object
constructors in configuration files, which are usually treated either as maps
or as the dynamic pseudo-type.
## Type Constraints as Values
Along with defining a convention for writing down types using HCL expression
constructs, this package also includes a mechanism for representing types as
values that can be used as data within an HCL-based language.
`typeexpr.TypeConstraintType` is a
[`cty` capsule type](https://github.com/zclconf/go-cty/blob/master/docs/types.md#capsule-types)
that encapsulates `cty.Type` values. You can construct such a value directly
using the `TypeConstraintVal` function:
```go
tyVal := typeexpr.TypeConstraintVal(cty.String)
// We can unpack the type from a value using TypeConstraintFromVal
ty := typeExpr.TypeConstraintFromVal(tyVal)
```
However, the primary purpose of `typeexpr.TypeConstraintType` is to be
specified as the type constraint for an argument, in which case it serves
as a signal for HCL to treat the argument expression as a type constraint
expression as defined above, rather than as a normal value expression.
"An argument" in the above in practice means the following two locations:
* As the type constraint for a parameter of a cty function that will be
used in an `hcl.EvalContext`. In that case, function calls in the HCL
native expression syntax will require the argument to be valid type constraint
expression syntax and the function implementation will receive a
`TypeConstraintType` value as the argument value for that parameter.
* As the type constraint for a `hcldec.AttrSpec` or `hcldec.BlockAttrsSpec`
when decoding an HCL body using `hcldec`. In that case, the attributes
with that type constraint will be required to be valid type constraint
expression syntax and the result will be a `TypeConstraintType` value.
Note that the special handling of these arguments means that an argument
marked in this way must use the type constraint syntax directly. It is not
valid to pass in a value of `TypeConstraintType` that has been obtained
dynamically via some other expression result.
`TypeConstraintType` is provided with the intent of using it internally within
application code when incorporating type constraint expression syntax into
an HCL-based language, not to be used for dynamic "programming with types". A
calling application could support programming with types by defining its _own_
capsule type, but that is not the purpose of `TypeConstraintType`.
## The "convert" `cty` Function
Building on the `TypeConstraintType` described in the previous section, this
package also provides `typeexpr.ConvertFunc` which is a cty function that
can be placed into a `cty.EvalContext` (conventionally named "convert") in
order to provide a general type conversion function in an HCL-based language:
```hcl
foo = convert("true", bool)
```
The second parameter uses the mechanism described in the previous section to
require its argument to be a type constraint expression rather than a value
expression. In doing so, it allows converting with any type constraint that
can be expressed in this package's type constraint syntax. In the above example,
the `foo` argument would receive a boolean true, or `cty.True` in `cty` terms.
The target type constraint must always be provided statically using inline
type constraint syntax. There is no way to _dynamically_ select a type
constraint using this function.

@ -0,0 +1,11 @@
// Package typeexpr extends HCL with a convention for describing HCL types
// within configuration files.
//
// The type syntax is processed statically from a hcl.Expression, so it cannot
// use any of the usual language operators. This is similar to type expressions
// in statically-typed programming languages.
//
// variable "example" {
// type = list(string)
// }
package typeexpr

@ -0,0 +1,196 @@
package typeexpr
import (
"fmt"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
const invalidTypeSummary = "Invalid type specification"
// getType is the internal implementation of both Type and TypeConstraint,
// using the passed flag to distinguish. When constraint is false, the "any"
// keyword will produce an error.
func getType(expr hcl.Expression, constraint bool) (cty.Type, hcl.Diagnostics) {
// First we'll try for one of our keywords
kw := hcl.ExprAsKeyword(expr)
switch kw {
case "bool":
return cty.Bool, nil
case "string":
return cty.String, nil
case "number":
return cty.Number, nil
case "any":
if constraint {
return cty.DynamicPseudoType, nil
}
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("The keyword %q cannot be used in this type specification: an exact type is required.", kw),
Subject: expr.Range().Ptr(),
}}
case "list", "map", "set":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("The %s type constructor requires one argument specifying the element type.", kw),
Subject: expr.Range().Ptr(),
}}
case "object":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "The object type constructor requires one argument specifying the attribute types and values as a map.",
Subject: expr.Range().Ptr(),
}}
case "tuple":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "The tuple type constructor requires one argument specifying the element types as a list.",
Subject: expr.Range().Ptr(),
}}
case "":
// okay! we'll fall through and try processing as a call, then.
default:
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("The keyword %q is not a valid type specification.", kw),
Subject: expr.Range().Ptr(),
}}
}
// If we get down here then our expression isn't just a keyword, so we'll
// try to process it as a call instead.
call, diags := hcl.ExprCall(expr)
if diags.HasErrors() {
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "A type specification is either a primitive type keyword (bool, number, string) or a complex type constructor call, like list(string).",
Subject: expr.Range().Ptr(),
}}
}
switch call.Name {
case "bool", "string", "number", "any":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("Primitive type keyword %q does not expect arguments.", call.Name),
Subject: &call.ArgsRange,
}}
}
if len(call.Arguments) != 1 {
contextRange := call.ArgsRange
subjectRange := call.ArgsRange
if len(call.Arguments) > 1 {
// If we have too many arguments (as opposed to too _few_) then
// we'll highlight the extraneous arguments as the diagnostic
// subject.
subjectRange = hcl.RangeBetween(call.Arguments[1].Range(), call.Arguments[len(call.Arguments)-1].Range())
}
switch call.Name {
case "list", "set", "map":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("The %s type constructor requires one argument specifying the element type.", call.Name),
Subject: &subjectRange,
Context: &contextRange,
}}
case "object":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "The object type constructor requires one argument specifying the attribute types and values as a map.",
Subject: &subjectRange,
Context: &contextRange,
}}
case "tuple":
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "The tuple type constructor requires one argument specifying the element types as a list.",
Subject: &subjectRange,
Context: &contextRange,
}}
}
}
switch call.Name {
case "list":
ety, diags := getType(call.Arguments[0], constraint)
return cty.List(ety), diags
case "set":
ety, diags := getType(call.Arguments[0], constraint)
return cty.Set(ety), diags
case "map":
ety, diags := getType(call.Arguments[0], constraint)
return cty.Map(ety), diags
case "object":
attrDefs, diags := hcl.ExprMap(call.Arguments[0])
if diags.HasErrors() {
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "Object type constructor requires a map whose keys are attribute names and whose values are the corresponding attribute types.",
Subject: call.Arguments[0].Range().Ptr(),
Context: expr.Range().Ptr(),
}}
}
atys := make(map[string]cty.Type)
for _, attrDef := range attrDefs {
attrName := hcl.ExprAsKeyword(attrDef.Key)
if attrName == "" {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "Object constructor map keys must be attribute names.",
Subject: attrDef.Key.Range().Ptr(),
Context: expr.Range().Ptr(),
})
continue
}
aty, attrDiags := getType(attrDef.Value, constraint)
diags = append(diags, attrDiags...)
atys[attrName] = aty
}
return cty.Object(atys), diags
case "tuple":
elemDefs, diags := hcl.ExprList(call.Arguments[0])
if diags.HasErrors() {
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: "Tuple type constructor requires a list of element types.",
Subject: call.Arguments[0].Range().Ptr(),
Context: expr.Range().Ptr(),
}}
}
etys := make([]cty.Type, len(elemDefs))
for i, defExpr := range elemDefs {
ety, elemDiags := getType(defExpr, constraint)
diags = append(diags, elemDiags...)
etys[i] = ety
}
return cty.Tuple(etys), diags
default:
// Can't access call.Arguments in this path because we've not validated
// that it contains exactly one expression here.
return cty.DynamicPseudoType, hcl.Diagnostics{{
Severity: hcl.DiagError,
Summary: invalidTypeSummary,
Detail: fmt.Sprintf("Keyword %q is not a valid type constructor.", call.Name),
Subject: expr.Range().Ptr(),
}}
}
}

@ -0,0 +1,129 @@
package typeexpr
import (
"bytes"
"fmt"
"sort"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/hashicorp/hcl/v2"
"github.com/zclconf/go-cty/cty"
)
// Type attempts to process the given expression as a type expression and, if
// successful, returns the resulting type. If unsuccessful, error diagnostics
// are returned.
func Type(expr hcl.Expression) (cty.Type, hcl.Diagnostics) {
return getType(expr, false)
}
// TypeConstraint attempts to parse the given expression as a type constraint
// and, if successful, returns the resulting type. If unsuccessful, error
// diagnostics are returned.
//
// A type constraint has the same structure as a type, but it additionally
// allows the keyword "any" to represent cty.DynamicPseudoType, which is often
// used as a wildcard in type checking and type conversion operations.
func TypeConstraint(expr hcl.Expression) (cty.Type, hcl.Diagnostics) {
return getType(expr, true)
}
// TypeString returns a string rendering of the given type as it would be
// expected to appear in the HCL native syntax.
//
// This is primarily intended for showing types to the user in an application
// that uses typexpr, where the user can be assumed to be familiar with the
// type expression syntax. In applications that do not use typeexpr these
// results may be confusing to the user and so type.FriendlyName may be
// preferable, even though it's less precise.
//
// TypeString produces reasonable results only for types like what would be
// produced by the Type and TypeConstraint functions. In particular, it cannot
// support capsule types.
func TypeString(ty cty.Type) string {
// Easy cases first
switch ty {
case cty.String:
return "string"
case cty.Bool:
return "bool"
case cty.Number:
return "number"
case cty.DynamicPseudoType:
return "any"
}
if ty.IsCapsuleType() {
panic("TypeString does not support capsule types")
}
if ty.IsCollectionType() {
ety := ty.ElementType()
etyString := TypeString(ety)
switch {
case ty.IsListType():
return fmt.Sprintf("list(%s)", etyString)
case ty.IsSetType():
return fmt.Sprintf("set(%s)", etyString)
case ty.IsMapType():
return fmt.Sprintf("map(%s)", etyString)
default:
// Should never happen because the above is exhaustive
panic("unsupported collection type")
}
}
if ty.IsObjectType() {
var buf bytes.Buffer
buf.WriteString("object({")
atys := ty.AttributeTypes()
names := make([]string, 0, len(atys))
for name := range atys {
names = append(names, name)
}
sort.Strings(names)
first := true
for _, name := range names {
aty := atys[name]
if !first {
buf.WriteByte(',')
}
if !hclsyntax.ValidIdentifier(name) {
// Should never happen for any type produced by this package,
// but we'll do something reasonable here just so we don't
// produce garbage if someone gives us a hand-assembled object
// type that has weird attribute names.
// Using Go-style quoting here isn't perfect, since it doesn't
// exactly match HCL syntax, but it's fine for an edge-case.
buf.WriteString(fmt.Sprintf("%q", name))
} else {
buf.WriteString(name)
}
buf.WriteByte('=')
buf.WriteString(TypeString(aty))
first = false
}
buf.WriteString("})")
return buf.String()
}
if ty.IsTupleType() {
var buf bytes.Buffer
buf.WriteString("tuple([")
etys := ty.TupleElementTypes()
first := true
for _, ety := range etys {
if !first {
buf.WriteByte(',')
}
buf.WriteString(TypeString(ety))
first = false
}
buf.WriteString("])")
return buf.String()
}
// Should never happen because we covered all cases above.
panic(fmt.Errorf("unsupported type %#v", ty))
}

@ -0,0 +1,118 @@
package typeexpr
import (
"fmt"
"reflect"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/ext/customdecode"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
// TypeConstraintType is a cty capsule type that allows cty type constraints to
// be used as values.
//
// If TypeConstraintType is used in a context supporting the
// customdecode.CustomExpressionDecoder extension then it will implement
// expression decoding using the TypeConstraint function, thus allowing
// type expressions to be used in contexts where value expressions might
// normally be expected, such as in arguments to function calls.
var TypeConstraintType cty.Type
// TypeConstraintVal constructs a cty.Value whose type is
// TypeConstraintType.
func TypeConstraintVal(ty cty.Type) cty.Value {
return cty.CapsuleVal(TypeConstraintType, &ty)
}
// TypeConstraintFromVal extracts the type from a cty.Value of
// TypeConstraintType that was previously constructed using TypeConstraintVal.
//
// If the given value isn't a known, non-null value of TypeConstraintType
// then this function will panic.
func TypeConstraintFromVal(v cty.Value) cty.Type {
if !v.Type().Equals(TypeConstraintType) {
panic("value is not of TypeConstraintType")
}
ptr := v.EncapsulatedValue().(*cty.Type)
return *ptr
}
// ConvertFunc is a cty function that implements type conversions.
//
// Its signature is as follows:
// convert(value, type_constraint)
//
// ...where type_constraint is a type constraint expression as defined by
// typeexpr.TypeConstraint.
//
// It relies on HCL's customdecode extension and so it's not suitable for use
// in non-HCL contexts or if you are using a HCL syntax implementation that
// does not support customdecode for function arguments. However, it _is_
// supported for function calls in the HCL native expression syntax.
var ConvertFunc function.Function
func init() {
TypeConstraintType = cty.CapsuleWithOps("type constraint", reflect.TypeOf(cty.Type{}), &cty.CapsuleOps{
ExtensionData: func(key interface{}) interface{} {
switch key {
case customdecode.CustomExpressionDecoder:
return customdecode.CustomExpressionDecoderFunc(
func(expr hcl.Expression, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
ty, diags := TypeConstraint(expr)
if diags.HasErrors() {
return cty.NilVal, diags
}
return TypeConstraintVal(ty), nil
},
)
default:
return nil
}
},
TypeGoString: func(_ reflect.Type) string {
return "typeexpr.TypeConstraintType"
},
GoString: func(raw interface{}) string {
tyPtr := raw.(*cty.Type)
return fmt.Sprintf("typeexpr.TypeConstraintVal(%#v)", *tyPtr)
},
RawEquals: func(a, b interface{}) bool {
aPtr := a.(*cty.Type)
bPtr := b.(*cty.Type)
return (*aPtr).Equals(*bPtr)
},
})
ConvertFunc = function.New(&function.Spec{
Params: []function.Parameter{
{
Name: "value",
Type: cty.DynamicPseudoType,
AllowNull: true,
AllowDynamicType: true,
},
{
Name: "type",
Type: TypeConstraintType,
},
},
Type: func(args []cty.Value) (cty.Type, error) {
wantTypePtr := args[1].EncapsulatedValue().(*cty.Type)
got, err := convert.Convert(args[0], *wantTypePtr)
if err != nil {
return cty.NilType, function.NewArgError(0, err)
}
return got.Type(), nil
},
Impl: func(args []cty.Value, retType cty.Type) (cty.Value, error) {
v, err := convert.Convert(args[0], retType)
if err != nil {
return cty.NilVal, function.NewArgError(0, err)
}
return v, nil
},
})
}

@ -25,4 +25,4 @@ inclusion in a `hcl.EvalContext`. It also returns a new `cty.Body` that
contains the remainder of the content from the given body, allowing for contains the remainder of the content from the given body, allowing for
further processing of remaining content. further processing of remaining content.
For more information, see [the godoc reference](http://godoc.org/github.com/hashicorp/hcl/v2/ext/userfunc). For more information, see [the godoc reference](https://pkg.go.dev/github.com/hashicorp/hcl/v2/ext/userfunc?tab=doc).

@ -65,6 +65,19 @@ func decodeBodyToStruct(body hcl.Body, ctx *hcl.EvalContext, val reflect.Value)
tags := getFieldTags(val.Type()) tags := getFieldTags(val.Type())
if tags.Body != nil {
fieldIdx := *tags.Body
field := val.Type().Field(fieldIdx)
fieldV := val.Field(fieldIdx)
switch {
case bodyType.AssignableTo(field.Type):
fieldV.Set(reflect.ValueOf(body))
default:
diags = append(diags, decodeBodyToValue(body, ctx, fieldV)...)
}
}
if tags.Remain != nil { if tags.Remain != nil {
fieldIdx := *tags.Remain fieldIdx := *tags.Remain
field := val.Type().Field(fieldIdx) field := val.Type().Field(fieldIdx)
@ -185,6 +198,9 @@ func decodeBodyToStruct(body hcl.Body, ctx *hcl.EvalContext, val reflect.Value)
diags = append(diags, decodeBlockToValue(block, ctx, v.Elem())...) diags = append(diags, decodeBlockToValue(block, ctx, v.Elem())...)
sli.Index(i).Set(v) sli.Index(i).Set(v)
} else { } else {
if i >= sli.Len() {
sli = reflect.Append(sli, reflect.Indirect(reflect.New(ty)))
}
diags = append(diags, decodeBlockToValue(block, ctx, sli.Index(i))...) diags = append(diags, decodeBlockToValue(block, ctx, sli.Index(i))...)
} }
} }

@ -30,6 +30,13 @@
// in which case multiple blocks of the corresponding type are decoded into // in which case multiple blocks of the corresponding type are decoded into
// the slice. // the slice.
// //
// "body" can be placed on a single field of type hcl.Body to capture
// the full hcl.Body that was decoded for a block. This does not allow leftover
// values like "remain", so a decoding error will still be returned if leftover
// fields are given. If you want to capture the decoding body PLUS leftover
// fields, you must specify a "remain" field as well to prevent errors. The
// body field and the remain field will both contain the leftover fields.
//
// "label" fields are considered only in a struct used as the type of a field // "label" fields are considered only in a struct used as the type of a field
// marked as "block", and are used sequentially to capture the labels of // marked as "block", and are used sequentially to capture the labels of
// the blocks being decoded. In this case, the name token is used only as // the blocks being decoded. In this case, the name token is used only as

@ -113,6 +113,7 @@ type fieldTags struct {
Blocks map[string]int Blocks map[string]int
Labels []labelField Labels []labelField
Remain *int Remain *int
Body *int
Optional map[string]bool Optional map[string]bool
} }
@ -162,6 +163,12 @@ func getFieldTags(ty reflect.Type) *fieldTags {
} }
idx := i // copy, because this loop will continue assigning to i idx := i // copy, because this loop will continue assigning to i
ret.Remain = &idx ret.Remain = &idx
case "body":
if ret.Body != nil {
panic("only one 'body' tag is permitted")
}
idx := i // copy, because this loop will continue assigning to i
ret.Body = &idx
case "optional": case "optional":
ret.Attributes[name] = i ret.Attributes[name] = i
ret.Optional[name] = true ret.Optional[name] = true

@ -27,6 +27,32 @@ type Expression interface {
// Assert that Expression implements hcl.Expression // Assert that Expression implements hcl.Expression
var assertExprImplExpr hcl.Expression = Expression(nil) var assertExprImplExpr hcl.Expression = Expression(nil)
// ParenthesesExpr represents an expression written in grouping
// parentheses.
//
// The parser takes care of the precedence effect of the parentheses, so the
// only purpose of this separate expression node is to capture the source range
// of the parentheses themselves, rather than the source range of the
// expression within. All of the other expression operations just pass through
// to the underlying expression.
type ParenthesesExpr struct {
Expression
SrcRange hcl.Range
}
var _ hcl.Expression = (*ParenthesesExpr)(nil)
func (e *ParenthesesExpr) Range() hcl.Range {
return e.SrcRange
}
func (e *ParenthesesExpr) walkChildNodes(w internalWalkFunc) {
// We override the walkChildNodes from the embedded Expression to
// ensure that both the parentheses _and_ the content are visible
// in a walk.
w(e.Expression)
}
// LiteralValueExpr is an expression that just always returns a given value. // LiteralValueExpr is an expression that just always returns a given value.
type LiteralValueExpr struct { type LiteralValueExpr struct {
Val cty.Value Val cty.Value
@ -291,13 +317,17 @@ func (e *FunctionCallExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnosti
return cty.DynamicVal, diags return cty.DynamicVal, diags
} }
// When expanding arguments from a collection, we must first unmark
// the collection itself, and apply any marks directly to the
// elements. This ensures that marks propagate correctly.
expandVal, marks := expandVal.Unmark()
newArgs := make([]Expression, 0, (len(args)-1)+expandVal.LengthInt()) newArgs := make([]Expression, 0, (len(args)-1)+expandVal.LengthInt())
newArgs = append(newArgs, args[:len(args)-1]...) newArgs = append(newArgs, args[:len(args)-1]...)
it := expandVal.ElementIterator() it := expandVal.ElementIterator()
for it.Next() { for it.Next() {
_, val := it.Element() _, val := it.Element()
newArgs = append(newArgs, &LiteralValueExpr{ newArgs = append(newArgs, &LiteralValueExpr{
Val: val, Val: val.WithMarks(marks),
SrcRange: expandExpr.Range(), SrcRange: expandExpr.Range(),
}) })
} }
@ -598,6 +628,8 @@ func (e *ConditionalExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostic
return cty.UnknownVal(resultType), diags return cty.UnknownVal(resultType), diags
} }
// Unmark result before testing for truthiness
condResult, _ = condResult.UnmarkDeep()
if condResult.True() { if condResult.True() {
diags = append(diags, trueDiags...) diags = append(diags, trueDiags...)
if convs[0] != nil { if convs[0] != nil {
@ -793,6 +825,19 @@ func (e *ObjectConsExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics
continue continue
} }
if key.IsMarked() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Marked value as key",
Detail: "Can't use a marked value as a key.",
Subject: item.ValueExpr.Range().Ptr(),
Expression: item.KeyExpr,
EvalContext: ctx,
})
known = false
continue
}
var err error var err error
key, err = convert.Convert(key, cty.String) key, err = convert.Convert(key, cty.String)
if err != nil { if err != nil {
@ -971,6 +1016,9 @@ func (e *ForExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
if collVal.Type() == cty.DynamicPseudoType { if collVal.Type() == cty.DynamicPseudoType {
return cty.DynamicVal, diags return cty.DynamicVal, diags
} }
// Unmark collection before checking for iterability, because marked
// values cannot be iterated
collVal, marks := collVal.Unmark()
if !collVal.CanIterateElements() { if !collVal.CanIterateElements() {
diags = append(diags, &hcl.Diagnostic{ diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError, Severity: hcl.DiagError,
@ -1140,6 +1188,19 @@ func (e *ForExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
continue continue
} }
if key.IsMarked() {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid object key",
Detail: "Marked values cannot be used as object keys.",
Subject: e.KeyExpr.Range().Ptr(),
Context: &e.SrcRange,
Expression: e.KeyExpr,
EvalContext: childCtx,
})
continue
}
val, valDiags := e.ValExpr.Value(childCtx) val, valDiags := e.ValExpr.Value(childCtx)
diags = append(diags, valDiags...) diags = append(diags, valDiags...)
@ -1178,7 +1239,7 @@ func (e *ForExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
} }
} }
return cty.ObjectVal(vals), diags return cty.ObjectVal(vals).WithMarks(marks), diags
} else { } else {
// Producing a tuple // Producing a tuple
@ -1254,7 +1315,7 @@ func (e *ForExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return cty.DynamicVal, diags return cty.DynamicVal, diags
} }
return cty.TupleVal(vals), diags return cty.TupleVal(vals).WithMarks(marks), diags
} }
} }
@ -1317,12 +1378,6 @@ func (e *SplatExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
} }
sourceTy := sourceVal.Type() sourceTy := sourceVal.Type()
if sourceTy == cty.DynamicPseudoType {
// If we don't even know the _type_ of our source value yet then
// we'll need to defer all processing, since we can't decide our
// result type either.
return cty.DynamicVal, diags
}
// A "special power" of splat expressions is that they can be applied // A "special power" of splat expressions is that they can be applied
// both to tuples/lists and to other values, and in the latter case // both to tuples/lists and to other values, and in the latter case
@ -1346,6 +1401,13 @@ func (e *SplatExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return cty.DynamicVal, diags return cty.DynamicVal, diags
} }
if sourceTy == cty.DynamicPseudoType {
// If we don't even know the _type_ of our source value yet then
// we'll need to defer all processing, since we can't decide our
// result type either.
return cty.DynamicVal, diags
}
if autoUpgrade { if autoUpgrade {
sourceVal = cty.TupleVal([]cty.Value{sourceVal}) sourceVal = cty.TupleVal([]cty.Value{sourceVal})
sourceTy = sourceVal.Type() sourceTy = sourceVal.Type()

@ -26,6 +26,9 @@ func (e *TemplateExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics)
var diags hcl.Diagnostics var diags hcl.Diagnostics
isKnown := true isKnown := true
// Maintain a set of marks for values used in the template
marks := make(cty.ValueMarks)
for _, part := range e.Parts { for _, part := range e.Parts {
partVal, partDiags := part.Value(ctx) partVal, partDiags := part.Value(ctx)
diags = append(diags, partDiags...) diags = append(diags, partDiags...)
@ -71,14 +74,24 @@ func (e *TemplateExpr) Value(ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics)
continue continue
} }
buf.WriteString(strVal.AsString()) // Unmark the part and merge its marks into the set
unmarked, partMarks := strVal.Unmark()
for k, v := range partMarks {
marks[k] = v
}
buf.WriteString(unmarked.AsString())
} }
var ret cty.Value
if !isKnown { if !isKnown {
return cty.UnknownVal(cty.String), diags ret = cty.UnknownVal(cty.String)
} else {
ret = cty.StringVal(buf.String())
} }
return cty.StringVal(buf.String()), diags // Apply the full set of marks to the returned value
return ret.WithMarks(marks), diags
} }
func (e *TemplateExpr) Range() hcl.Range { func (e *TemplateExpr) Range() hcl.Range {

@ -911,7 +911,7 @@ func (p *parser) parseExpressionTerm() (Expression, hcl.Diagnostics) {
switch start.Type { switch start.Type {
case TokenOParen: case TokenOParen:
p.Read() // eat open paren oParen := p.Read() // eat open paren
p.PushIncludeNewlines(false) p.PushIncludeNewlines(false)
@ -937,9 +937,19 @@ func (p *parser) parseExpressionTerm() (Expression, hcl.Diagnostics) {
p.setRecovery() p.setRecovery()
} }
p.Read() // eat closing paren cParen := p.Read() // eat closing paren
p.PopIncludeNewlines() p.PopIncludeNewlines()
// Our parser's already taken care of the precedence effect of the
// parentheses by considering them to be a kind of "term", but we
// still need to include the parentheses in our AST so we can give
// an accurate representation of the source range that includes the
// open and closing parentheses.
expr = &ParenthesesExpr{
Expression: expr,
SrcRange: hcl.RangeBetween(oParen.Range, cParen.Range),
}
return expr, diags return expr, diags
case TokenNumberLit: case TokenNumberLit:

@ -202,7 +202,7 @@ func checkInvalidTokens(tokens Tokens) hcl.Diagnostics {
case TokenBitwiseAnd: case TokenBitwiseAnd:
suggestion = " Did you mean boolean AND (\"&&\")?" suggestion = " Did you mean boolean AND (\"&&\")?"
case TokenBitwiseOr: case TokenBitwiseOr:
suggestion = " Did you mean boolean OR (\"&&\")?" suggestion = " Did you mean boolean OR (\"||\")?"
case TokenBitwiseNot: case TokenBitwiseNot:
suggestion = " Did you mean boolean NOT (\"!\")?" suggestion = " Did you mean boolean NOT (\"!\")?"
} }
@ -294,12 +294,23 @@ func checkInvalidTokens(tokens Tokens) hcl.Diagnostics {
Subject: &tok.Range, Subject: &tok.Range,
}) })
case TokenInvalid: case TokenInvalid:
diags = append(diags, &hcl.Diagnostic{ chars := string(tok.Bytes)
Severity: hcl.DiagError, switch chars {
Summary: "Invalid character", case "“", "”":
Detail: "This character is not used within the language.", diags = append(diags, &hcl.Diagnostic{
Subject: &tok.Range, Severity: hcl.DiagError,
}) Summary: "Invalid character",
Detail: "\"Curly quotes\" are not valid here. These can sometimes be inadvertently introduced when sharing code via documents or discussion forums. It might help to replace the character with a \"straight quote\".",
Subject: &tok.Range,
})
default:
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Invalid character",
Detail: "This character is not used within the language.",
Subject: &tok.Range,
})
}
} }
} }
return diags return diags

@ -10,7 +10,7 @@ type Block struct {
leadComments *node leadComments *node
typeName *node typeName *node
labels nodeSet labels *node
open *node open *node
body *node body *node
close *node close *node
@ -19,7 +19,6 @@ type Block struct {
func newBlock() *Block { func newBlock() *Block {
return &Block{ return &Block{
inTree: newInTree(), inTree: newInTree(),
labels: newNodeSet(),
} }
} }
@ -35,12 +34,8 @@ func (b *Block) init(typeName string, labels []string) {
nameObj := newIdentifier(nameTok) nameObj := newIdentifier(nameTok)
b.leadComments = b.children.Append(newComments(nil)) b.leadComments = b.children.Append(newComments(nil))
b.typeName = b.children.Append(nameObj) b.typeName = b.children.Append(nameObj)
for _, label := range labels { labelsObj := newBlockLabels(labels)
labelToks := TokensForValue(cty.StringVal(label)) b.labels = b.children.Append(labelsObj)
labelObj := newQuoted(labelToks)
labelNode := b.children.Append(labelObj)
b.labels.Add(labelNode)
}
b.open = b.children.AppendUnstructuredTokens(Tokens{ b.open = b.children.AppendUnstructuredTokens(Tokens{
{ {
Type: hclsyntax.TokenOBrace, Type: hclsyntax.TokenOBrace,
@ -79,10 +74,68 @@ func (b *Block) Type() string {
return string(typeNameObj.token.Bytes) return string(typeNameObj.token.Bytes)
} }
// SetType updates the type name of the block to a given name.
func (b *Block) SetType(typeName string) {
nameTok := newIdentToken(typeName)
nameObj := newIdentifier(nameTok)
b.typeName.ReplaceWith(nameObj)
}
// Labels returns the labels of the block. // Labels returns the labels of the block.
func (b *Block) Labels() []string { func (b *Block) Labels() []string {
labelNames := make([]string, 0, len(b.labels)) return b.labelsObj().Current()
list := b.labels.List() }
// SetLabels updates the labels of the block to given labels.
// Since we cannot assume that old and new labels are equal in length,
// remove old labels and insert new ones before TokenOBrace.
func (b *Block) SetLabels(labels []string) {
b.labelsObj().Replace(labels)
}
// labelsObj returns the internal node content representation of the block
// labels. This is not part of the public API because we're intentionally
// exposing only a limited API to get/set labels on the block itself in a
// manner similar to the main hcl.Block type, but our block accessors all
// use this to get the underlying node content to work with.
func (b *Block) labelsObj() *blockLabels {
return b.labels.content.(*blockLabels)
}
type blockLabels struct {
inTree
items nodeSet
}
func newBlockLabels(labels []string) *blockLabels {
ret := &blockLabels{
inTree: newInTree(),
items: newNodeSet(),
}
ret.Replace(labels)
return ret
}
func (bl *blockLabels) Replace(newLabels []string) {
bl.inTree.children.Clear()
bl.items.Clear()
for _, label := range newLabels {
labelToks := TokensForValue(cty.StringVal(label))
// Force a new label to use the quoted form, which is the idiomatic
// form. The unquoted form is supported in HCL 2 only for compatibility
// with historical use in HCL 1.
labelObj := newQuoted(labelToks)
labelNode := bl.children.Append(labelObj)
bl.items.Add(labelNode)
}
}
func (bl *blockLabels) Current() []string {
labelNames := make([]string, 0, len(bl.items))
list := bl.items.List()
for _, label := range list { for _, label := range list {
switch labelObj := label.content.(type) { switch labelObj := label.content.(type) {
@ -106,6 +159,12 @@ func (b *Block) Labels() []string {
if !diags.HasErrors() { if !diags.HasErrors() {
labelNames = append(labelNames, labelString) labelNames = append(labelNames, labelString)
} }
} else if len(tokens) == 2 &&
tokens[0].Type == hclsyntax.TokenOQuote &&
tokens[1].Type == hclsyntax.TokenCQuote {
// An open quote followed immediately by a closing quote is a
// valid but unusual blank string label.
labelNames = append(labelNames, "")
} }
default: default:

@ -263,6 +263,10 @@ func spaceAfterToken(subject, before, after *Token) bool {
case after.Type == hclsyntax.TokenOBrack && (subject.Type == hclsyntax.TokenIdent || subject.Type == hclsyntax.TokenNumberLit || tokenBracketChange(subject) < 0): case after.Type == hclsyntax.TokenOBrack && (subject.Type == hclsyntax.TokenIdent || subject.Type == hclsyntax.TokenNumberLit || tokenBracketChange(subject) < 0):
return false return false
case subject.Type == hclsyntax.TokenBang:
// No space after a bang
return false
case subject.Type == hclsyntax.TokenMinus: case subject.Type == hclsyntax.TokenMinus:
// Since a minus can either be subtraction or negation, and the latter // Since a minus can either be subtraction or negation, and the latter
// should _not_ have a space after it, we need to use some heuristics // should _not_ have a space after it, we need to use some heuristics

@ -130,6 +130,36 @@ func (ns *nodes) AppendNode(n *node) {
} }
} }
// Insert inserts a nodeContent at a given position.
// This is just a wrapper for InsertNode. See InsertNode for details.
func (ns *nodes) Insert(pos *node, c nodeContent) *node {
n := &node{
content: c,
}
ns.InsertNode(pos, n)
n.list = ns
return n
}
// InsertNode inserts a node at a given position.
// The first argument is a node reference before which to insert.
// To insert it to an empty list, set position to nil.
func (ns *nodes) InsertNode(pos *node, n *node) {
if pos == nil {
// inserts n to empty list.
ns.first = n
ns.last = n
} else {
// inserts n before pos.
pos.before.after = n
n.before = pos.before
pos.before = n
n.after = pos
}
n.list = ns
}
func (ns *nodes) AppendUnstructuredTokens(tokens Tokens) *node { func (ns *nodes) AppendUnstructuredTokens(tokens Tokens) *node {
if len(tokens) == 0 { if len(tokens) == 0 {
return nil return nil
@ -177,6 +207,12 @@ func (ns nodeSet) Remove(n *node) {
delete(ns, n) delete(ns, n)
} }
func (ns nodeSet) Clear() {
for n := range ns {
delete(ns, n)
}
}
func (ns nodeSet) List() []*node { func (ns nodeSet) List() []*node {
if len(ns) == 0 { if len(ns) == 0 {
return nil return nil

@ -289,7 +289,6 @@ func parseAttribute(nativeAttr *hclsyntax.Attribute, from, leadComments, lineCom
func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *node { func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments, newline inputTokens) *node {
block := &Block{ block := &Block{
inTree: newInTree(), inTree: newInTree(),
labels: newNodeSet(),
} }
children := block.inTree.children children := block.inTree.children
@ -312,24 +311,13 @@ func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments,
children.AppendNode(in) children.AppendNode(in)
} }
for _, rng := range nativeBlock.LabelRanges { before, labelsNode, from := parseBlockLabels(nativeBlock, from)
var labelTokens inputTokens block.labels = labelsNode
before, labelTokens, from = from.Partition(rng) children.AppendNode(labelsNode)
children.AppendUnstructuredTokens(before.Tokens())
tokens := labelTokens.Tokens()
var ln *node
if len(tokens) == 1 && tokens[0].Type == hclsyntax.TokenIdent {
ln = newNode(newIdentifier(tokens[0]))
} else {
ln = newNode(newQuoted(tokens))
}
block.labels.Add(ln)
children.AppendNode(ln)
}
before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange) before, oBrace, from := from.Partition(nativeBlock.OpenBraceRange)
children.AppendUnstructuredTokens(before.Tokens()) children.AppendUnstructuredTokens(before.Tokens())
children.AppendUnstructuredTokens(oBrace.Tokens()) block.open = children.AppendUnstructuredTokens(oBrace.Tokens())
// We go a bit out of order here: we go hunting for the closing brace // We go a bit out of order here: we go hunting for the closing brace
// so that we have a delimited body, but then we'll deal with the body // so that we have a delimited body, but then we'll deal with the body
@ -342,7 +330,7 @@ func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments,
children.AppendNode(body) children.AppendNode(body)
children.AppendUnstructuredTokens(after.Tokens()) children.AppendUnstructuredTokens(after.Tokens())
children.AppendUnstructuredTokens(cBrace.Tokens()) block.close = children.AppendUnstructuredTokens(cBrace.Tokens())
// stragglers // stragglers
children.AppendUnstructuredTokens(from.Tokens()) children.AppendUnstructuredTokens(from.Tokens())
@ -356,6 +344,34 @@ func parseBlock(nativeBlock *hclsyntax.Block, from, leadComments, lineComments,
return newNode(block) return newNode(block)
} }
func parseBlockLabels(nativeBlock *hclsyntax.Block, from inputTokens) (inputTokens, *node, inputTokens) {
labelsObj := newBlockLabels(nil)
children := labelsObj.children
var beforeAll inputTokens
for i, rng := range nativeBlock.LabelRanges {
var before, labelTokens inputTokens
before, labelTokens, from = from.Partition(rng)
if i == 0 {
beforeAll = before
} else {
children.AppendUnstructuredTokens(before.Tokens())
}
tokens := labelTokens.Tokens()
var ln *node
if len(tokens) == 1 && tokens[0].Type == hclsyntax.TokenIdent {
ln = newNode(newIdentifier(tokens[0]))
} else {
ln = newNode(newQuoted(tokens))
}
labelsObj.items.Add(ln)
children.AppendNode(ln)
}
after := from
return beforeAll, newNode(labelsObj), after
}
func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *node { func parseExpression(nativeExpr hclsyntax.Expression, from inputTokens) *node {
expr := newExpression() expr := newExpression()
children := expr.inTree.children children := expr.inTree.children

@ -8,15 +8,23 @@ import (
"github.com/zclconf/go-cty/cty" "github.com/zclconf/go-cty/cty"
) )
func parseFileContent(buf []byte, filename string) (node, hcl.Diagnostics) { func parseFileContent(buf []byte, filename string, start hcl.Pos) (node, hcl.Diagnostics) {
tokens := scan(buf, pos{ tokens := scan(buf, pos{Filename: filename, Pos: start})
Filename: filename, p := newPeeker(tokens)
Pos: hcl.Pos{ node, diags := parseValue(p)
Byte: 0, if len(diags) == 0 && p.Peek().Type != tokenEOF {
Line: 1, diags = diags.Append(&hcl.Diagnostic{
Column: 1, Severity: hcl.DiagError,
}, Summary: "Extraneous data after value",
}) Detail: "Extra characters appear after the JSON value.",
Subject: p.Peek().Range.Ptr(),
})
}
return node, diags
}
func parseExpression(buf []byte, filename string, start hcl.Pos) (node, hcl.Diagnostics) {
tokens := scan(buf, pos{Filename: filename, Pos: start})
p := newPeeker(tokens) p := newPeeker(tokens)
node, diags := parseValue(p) node, diags := parseValue(p)
if len(diags) == 0 && p.Peek().Type != tokenEOF { if len(diags) == 0 && p.Peek().Type != tokenEOF {

@ -18,7 +18,16 @@ import (
// from its HasErrors method. If HasErrors returns true, the file represents // from its HasErrors method. If HasErrors returns true, the file represents
// the subset of data that was able to be parsed, which may be none. // the subset of data that was able to be parsed, which may be none.
func Parse(src []byte, filename string) (*hcl.File, hcl.Diagnostics) { func Parse(src []byte, filename string) (*hcl.File, hcl.Diagnostics) {
rootNode, diags := parseFileContent(src, filename) return ParseWithStartPos(src, filename, hcl.Pos{Byte: 0, Line: 1, Column: 1})
}
// ParseWithStartPos attempts to parse like json.Parse, but unlike json.Parse
// you can pass a start position of the given JSON as a hcl.Pos.
//
// In most cases json.Parse should be sufficient, but it can be useful for parsing
// a part of JSON with correct positions.
func ParseWithStartPos(src []byte, filename string, start hcl.Pos) (*hcl.File, hcl.Diagnostics) {
rootNode, diags := parseFileContent(src, filename, start)
switch rootNode.(type) { switch rootNode.(type) {
case *objectVal, *arrayVal: case *objectVal, *arrayVal:
@ -62,6 +71,20 @@ func Parse(src []byte, filename string) (*hcl.File, hcl.Diagnostics) {
return file, diags return file, diags
} }
// ParseExpression parses the given buffer as a standalone JSON expression,
// returning it as an instance of Expression.
func ParseExpression(src []byte, filename string) (hcl.Expression, hcl.Diagnostics) {
return ParseExpressionWithStartPos(src, filename, hcl.Pos{Byte: 0, Line: 1, Column: 1})
}
// ParseExpressionWithStartPos parses like json.ParseExpression, but unlike
// json.ParseExpression you can pass a start position of the given JSON
// expression as a hcl.Pos.
func ParseExpressionWithStartPos(src []byte, filename string, start hcl.Pos) (hcl.Expression, hcl.Diagnostics) {
node, diags := parseExpression(src, filename, start)
return &expression{src: node}, diags
}
// ParseFile is a convenience wrapper around Parse that first attempts to load // ParseFile is a convenience wrapper around Parse that first attempts to load
// data from the given filename, passing the result to Parse if successful. // data from the given filename, passing the result to Parse if successful.
// //

@ -76,7 +76,10 @@ func Index(collection, key cty.Value, srcRange *Range) (cty.Value, Diagnostics)
} }
} }
has := collection.HasIndex(key) // Here we drop marks from HasIndex result, in order to allow basic
// traversal of a marked list, tuple, or map in the same way we can
// traverse a marked object
has, _ := collection.HasIndex(key).Unmark()
if !has.IsKnown() { if !has.IsKnown() {
if ty.IsTupleType() { if ty.IsTupleType() {
return cty.DynamicVal, nil return cty.DynamicVal, nil
@ -217,7 +220,12 @@ func GetAttr(obj cty.Value, attrName string, srcRange *Range) (cty.Value, Diagno
} }
idx := cty.StringVal(attrName) idx := cty.StringVal(attrName)
if obj.HasIndex(idx).False() {
// Here we drop marks from HasIndex result, in order to allow basic
// traversal of a marked map in the same way we can traverse a marked
// object
hasIndex, _ := obj.HasIndex(idx).Unmark()
if hasIndex.False() {
return cty.DynamicVal, Diagnostics{ return cty.DynamicVal, Diagnostics{
{ {
Severity: DiagError, Severity: DiagError,

@ -13,6 +13,14 @@ import (
// if we're converting from a set into a list of the same element type.) // if we're converting from a set into a list of the same element type.)
func conversionCollectionToList(ety cty.Type, conv conversion) conversion { func conversionCollectionToList(ety cty.Type, conv conversion) conversion {
return func(val cty.Value, path cty.Path) (cty.Value, error) { return func(val cty.Value, path cty.Path) (cty.Value, error) {
if !val.Length().IsKnown() {
// If the input collection has an unknown length (which is true
// for a set containing unknown values) then our result must be
// an unknown list, because we can't predict how many elements
// the resulting list should have.
return cty.UnknownVal(cty.List(val.Type().ElementType())), nil
}
elems := make([]cty.Value, 0, val.LengthInt()) elems := make([]cty.Value, 0, val.LengthInt())
i := int64(0) i := int64(0)
elemPath := append(path.Copy(), nil) elemPath := append(path.Copy(), nil)
@ -156,34 +164,45 @@ func conversionCollectionToMap(ety cty.Type, conv conversion) conversion {
// given tuple type and return a set of the given element type. // given tuple type and return a set of the given element type.
// //
// Will panic if the given tupleType isn't actually a tuple type. // Will panic if the given tupleType isn't actually a tuple type.
func conversionTupleToSet(tupleType cty.Type, listEty cty.Type, unsafe bool) conversion { func conversionTupleToSet(tupleType cty.Type, setEty cty.Type, unsafe bool) conversion {
tupleEtys := tupleType.TupleElementTypes() tupleEtys := tupleType.TupleElementTypes()
if len(tupleEtys) == 0 { if len(tupleEtys) == 0 {
// Empty tuple short-circuit // Empty tuple short-circuit
return func(val cty.Value, path cty.Path) (cty.Value, error) { return func(val cty.Value, path cty.Path) (cty.Value, error) {
return cty.SetValEmpty(listEty), nil return cty.SetValEmpty(setEty), nil
} }
} }
if listEty == cty.DynamicPseudoType { if setEty == cty.DynamicPseudoType {
// This is a special case where the caller wants us to find // This is a special case where the caller wants us to find
// a suitable single type that all elements can convert to, if // a suitable single type that all elements can convert to, if
// possible. // possible.
listEty, _ = unify(tupleEtys, unsafe) setEty, _ = unify(tupleEtys, unsafe)
if listEty == cty.NilType { if setEty == cty.NilType {
return nil return nil
} }
// If the set element type after unification is still the dynamic
// type, the only way this can result in a valid set is if all values
// are of dynamic type
if setEty == cty.DynamicPseudoType {
for _, tupleEty := range tupleEtys {
if !tupleEty.Equals(cty.DynamicPseudoType) {
return nil
}
}
}
} }
elemConvs := make([]conversion, len(tupleEtys)) elemConvs := make([]conversion, len(tupleEtys))
for i, tupleEty := range tupleEtys { for i, tupleEty := range tupleEtys {
if tupleEty.Equals(listEty) { if tupleEty.Equals(setEty) {
// no conversion required // no conversion required
continue continue
} }
elemConvs[i] = getConversion(tupleEty, listEty, unsafe) elemConvs[i] = getConversion(tupleEty, setEty, unsafe)
if elemConvs[i] == nil { if elemConvs[i] == nil {
// If any of our element conversions are impossible, then the our // If any of our element conversions are impossible, then the our
// whole conversion is impossible. // whole conversion is impossible.
@ -244,6 +263,17 @@ func conversionTupleToList(tupleType cty.Type, listEty cty.Type, unsafe bool) co
if listEty == cty.NilType { if listEty == cty.NilType {
return nil return nil
} }
// If the list element type after unification is still the dynamic
// type, the only way this can result in a valid list is if all values
// are of dynamic type
if listEty == cty.DynamicPseudoType {
for _, tupleEty := range tupleEtys {
if !tupleEty.Equals(cty.DynamicPseudoType) {
return nil
}
}
}
} }
elemConvs := make([]conversion, len(tupleEtys)) elemConvs := make([]conversion, len(tupleEtys))
@ -265,6 +295,7 @@ func conversionTupleToList(tupleType cty.Type, listEty cty.Type, unsafe bool) co
// element conversions in elemConvs // element conversions in elemConvs
return func(val cty.Value, path cty.Path) (cty.Value, error) { return func(val cty.Value, path cty.Path) (cty.Value, error) {
elems := make([]cty.Value, 0, len(elemConvs)) elems := make([]cty.Value, 0, len(elemConvs))
elemTys := make([]cty.Type, 0, len(elems))
elemPath := append(path.Copy(), nil) elemPath := append(path.Copy(), nil)
i := int64(0) i := int64(0)
it := val.ElementIterator() it := val.ElementIterator()
@ -284,10 +315,15 @@ func conversionTupleToList(tupleType cty.Type, listEty cty.Type, unsafe bool) co
} }
} }
elems = append(elems, val) elems = append(elems, val)
elemTys = append(elemTys, val.Type())
i++ i++
} }
elems, err := conversionUnifyListElements(elems, elemPath, unsafe)
if err != nil {
return cty.NilVal, err
}
return cty.ListVal(elems), nil return cty.ListVal(elems), nil
} }
} }
@ -430,6 +466,16 @@ func conversionMapToObject(mapType cty.Type, objType cty.Type, unsafe bool) conv
elems[name.AsString()] = val elems[name.AsString()] = val
} }
for name, aty := range objectAtys {
if _, exists := elems[name]; !exists {
if optional := objType.AttributeOptional(name); optional {
elems[name] = cty.NullVal(aty)
} else {
return cty.NilVal, path.NewErrorf("map has no element for required attribute %q", name)
}
}
}
return cty.ObjectVal(elems), nil return cty.ObjectVal(elems), nil
} }
} }
@ -441,6 +487,7 @@ func conversionUnifyCollectionElements(elems map[string]cty.Value, path cty.Path
} }
unifiedType, _ := unify(elemTypes, unsafe) unifiedType, _ := unify(elemTypes, unsafe)
if unifiedType == cty.NilType { if unifiedType == cty.NilType {
return nil, path.NewErrorf("collection elements cannot be unified")
} }
unifiedElems := make(map[string]cty.Value) unifiedElems := make(map[string]cty.Value)
@ -486,3 +533,37 @@ func conversionCheckMapElementTypes(elems map[string]cty.Value, path cty.Path) e
return nil return nil
} }
func conversionUnifyListElements(elems []cty.Value, path cty.Path, unsafe bool) ([]cty.Value, error) {
elemTypes := make([]cty.Type, len(elems))
for i, elem := range elems {
elemTypes[i] = elem.Type()
}
unifiedType, _ := unify(elemTypes, unsafe)
if unifiedType == cty.NilType {
return nil, path.NewErrorf("collection elements cannot be unified")
}
ret := make([]cty.Value, len(elems))
elemPath := append(path.Copy(), nil)
for i, elem := range elems {
if elem.Type().Equals(unifiedType) {
ret[i] = elem
continue
}
conv := getConversion(elem.Type(), unifiedType, unsafe)
if conv == nil {
}
elemPath[len(elemPath)-1] = cty.IndexStep{
Key: cty.NumberIntVal(int64(i)),
}
val, err := conv(elem, elemPath)
if err != nil {
return nil, err
}
ret[i] = val
}
return ret, nil
}

@ -11,17 +11,29 @@ import (
// type, meaning that each attribute of the output type has a corresponding // type, meaning that each attribute of the output type has a corresponding
// attribute in the input type where a recursive conversion is available. // attribute in the input type where a recursive conversion is available.
// //
// If the "out" type has any optional attributes, those attributes may be
// absent in the "in" type, in which case null values will be used in their
// place in the result.
//
// Shallow object conversions work the same for both safe and unsafe modes, // Shallow object conversions work the same for both safe and unsafe modes,
// but the safety flag is passed on to recursive conversions and may thus // but the safety flag is passed on to recursive conversions and may thus
// limit the above definition of "subset". // limit the above definition of "subset".
func conversionObjectToObject(in, out cty.Type, unsafe bool) conversion { func conversionObjectToObject(in, out cty.Type, unsafe bool) conversion {
inAtys := in.AttributeTypes() inAtys := in.AttributeTypes()
outAtys := out.AttributeTypes() outAtys := out.AttributeTypes()
outOptionals := out.OptionalAttributes()
attrConvs := make(map[string]conversion) attrConvs := make(map[string]conversion)
for name, outAty := range outAtys { for name, outAty := range outAtys {
inAty, exists := inAtys[name] inAty, exists := inAtys[name]
if !exists { if !exists {
if _, optional := outOptionals[name]; optional {
// If it's optional then we'll skip inserting an
// attribute conversion and then deal with inserting
// the default value in our overall conversion logic
// later.
continue
}
// No conversion is available, then. // No conversion is available, then.
return nil return nil
} }
@ -71,6 +83,13 @@ func conversionObjectToObject(in, out cty.Type, unsafe bool) conversion {
attrVals[name] = val attrVals[name] = val
} }
for name := range outOptionals {
if _, exists := attrVals[name]; !exists {
wantTy := outAtys[name]
attrVals[name] = cty.NullVal(wantTy)
}
}
return cty.ObjectVal(attrVals), nil return cty.ObjectVal(attrVals), nil
} }
} }

@ -78,10 +78,16 @@ func mismatchMessageObjects(got, want cty.Type) string {
for name, wantAty := range wantAtys { for name, wantAty := range wantAtys {
gotAty, exists := gotAtys[name] gotAty, exists := gotAtys[name]
if !exists { if !exists {
missingAttrs = append(missingAttrs, name) if !want.AttributeOptional(name) {
missingAttrs = append(missingAttrs, name)
}
continue continue
} }
if gotAty.Equals(wantAty) {
continue // exact match, so no problem
}
// We'll now try to convert these attributes in isolation and // We'll now try to convert these attributes in isolation and
// see if we have a nested conversion error to report. // see if we have a nested conversion error to report.
// We'll try an unsafe conversion first, and then fall back on // We'll try an unsafe conversion first, and then fall back on

@ -244,19 +244,21 @@ func (f Function) Call(args []cty.Value) (val cty.Value, err error) {
return cty.UnknownVal(expectedType), nil return cty.UnknownVal(expectedType), nil
} }
if val.IsMarked() && !spec.AllowMarked { if !spec.AllowMarked {
unwrappedVal, marks := val.Unmark() unwrappedVal, marks := val.UnmarkDeep()
// In order to avoid additional overhead on applications that if len(marks) > 0 {
// are not using marked values, we copy the given args only // In order to avoid additional overhead on applications that
// if we encounter a marked value we need to unmark. However, // are not using marked values, we copy the given args only
// as a consequence we end up doing redundant copying if multiple // if we encounter a marked value we need to unmark. However,
// marked values need to be unwrapped. That seems okay because // as a consequence we end up doing redundant copying if multiple
// argument lists are generally small. // marked values need to be unwrapped. That seems okay because
newArgs := make([]cty.Value, len(args)) // argument lists are generally small.
copy(newArgs, args) newArgs := make([]cty.Value, len(args))
newArgs[i] = unwrappedVal copy(newArgs, args)
resultMarks = append(resultMarks, marks) newArgs[i] = unwrappedVal
args = newArgs resultMarks = append(resultMarks, marks)
args = newArgs
}
} }
} }
@ -266,13 +268,15 @@ func (f Function) Call(args []cty.Value) (val cty.Value, err error) {
if !val.IsKnown() && !spec.AllowUnknown { if !val.IsKnown() && !spec.AllowUnknown {
return cty.UnknownVal(expectedType), nil return cty.UnknownVal(expectedType), nil
} }
if val.IsMarked() && !spec.AllowMarked { if !spec.AllowMarked {
unwrappedVal, marks := val.Unmark() unwrappedVal, marks := val.UnmarkDeep()
newArgs := make([]cty.Value, len(args)) if len(marks) > 0 {
copy(newArgs, args) newArgs := make([]cty.Value, len(args))
newArgs[len(posArgs)+i] = unwrappedVal copy(newArgs, args)
resultMarks = append(resultMarks, marks) newArgs[len(posArgs)+i] = unwrappedVal
args = newArgs resultMarks = append(resultMarks, marks)
args = newArgs
}
} }
} }
} }

@ -138,6 +138,13 @@ var ElementFunc = function.New(&function.Spec{
}, },
Type: func(args []cty.Value) (cty.Type, error) { Type: func(args []cty.Value) (cty.Type, error) {
list := args[0] list := args[0]
index := args[1]
if index.IsKnown() {
if index.LessThan(cty.NumberIntVal(0)).True() {
return cty.DynamicPseudoType, fmt.Errorf("cannot use element function with a negative index")
}
}
listTy := list.Type() listTy := list.Type()
switch { switch {
case listTy.IsListType(): case listTy.IsListType():
@ -173,6 +180,10 @@ var ElementFunc = function.New(&function.Spec{
return cty.DynamicVal, fmt.Errorf("invalid index: %s", err) return cty.DynamicVal, fmt.Errorf("invalid index: %s", err)
} }
if args[1].LessThan(cty.NumberIntVal(0)).True() {
return cty.DynamicVal, fmt.Errorf("cannot use element function with a negative index")
}
if !args[0].IsKnown() { if !args[0].IsKnown() {
return cty.UnknownVal(retType), nil return cty.UnknownVal(retType), nil
} }
@ -240,6 +251,10 @@ var CoalesceListFunc = function.New(&function.Spec{
return cty.UnknownVal(retType), nil return cty.UnknownVal(retType), nil
} }
if arg.IsNull() {
continue
}
if arg.LengthInt() > 0 { if arg.LengthInt() > 0 {
return arg, nil return arg, nil
} }
@ -492,6 +507,11 @@ var FlattenFunc = function.New(&function.Spec{
// We can flatten lists with unknown values, as long as they are not // We can flatten lists with unknown values, as long as they are not
// lists themselves. // lists themselves.
func flattener(flattenList cty.Value) ([]cty.Value, bool) { func flattener(flattenList cty.Value) ([]cty.Value, bool) {
if !flattenList.Length().IsKnown() {
// If we don't know the length of what we're flattening then we can't
// predict the length of our result yet either.
return nil, false
}
out := make([]cty.Value, 0) out := make([]cty.Value, 0)
for it := flattenList.ElementIterator(); it.Next(); { for it := flattenList.ElementIterator(); it.Next(); {
_, val := it.Element() _, val := it.Element()
@ -742,16 +762,10 @@ var MergeFunc = function.New(&function.Spec{
Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { Impl: func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
outputMap := make(map[string]cty.Value) outputMap := make(map[string]cty.Value)
// if all inputs are null, return a null value rather than an object
// with null attributes
allNull := true
for _, arg := range args { for _, arg := range args {
if arg.IsNull() { if arg.IsNull() {
continue continue
} else {
allNull = false
} }
for it := arg.ElementIterator(); it.Next(); { for it := arg.ElementIterator(); it.Next(); {
k, v := it.Element() k, v := it.Element()
outputMap[k.AsString()] = v outputMap[k.AsString()] = v
@ -759,9 +773,10 @@ var MergeFunc = function.New(&function.Spec{
} }
switch { switch {
case allNull:
return cty.NullVal(retType), nil
case retType.IsMapType(): case retType.IsMapType():
if len(outputMap) == 0 {
return cty.MapValEmpty(retType.ElementType()), nil
}
return cty.MapVal(outputMap), nil return cty.MapVal(outputMap), nil
case retType.IsObjectType(), retType.Equals(cty.DynamicPseudoType): case retType.IsObjectType(), retType.Equals(cty.DynamicPseudoType):
return cty.ObjectVal(outputMap), nil return cty.ObjectVal(outputMap), nil
@ -869,6 +884,10 @@ var SetProductFunc = function.New(&function.Spec{
total := 1 total := 1
for _, arg := range args { for _, arg := range args {
if !arg.Length().IsKnown() {
return cty.UnknownVal(retType), nil
}
// Because of our type checking function, we are guaranteed that // Because of our type checking function, we are guaranteed that
// all of the arguments are known, non-null values of types that // all of the arguments are known, non-null values of types that
// support LengthInt. // support LengthInt.
@ -1016,7 +1035,8 @@ func sliceIndexes(args []cty.Value) (int, int, bool, error) {
var startIndex, endIndex, length int var startIndex, endIndex, length int
var startKnown, endKnown, lengthKnown bool var startKnown, endKnown, lengthKnown bool
if args[0].Type().IsTupleType() || args[0].IsKnown() { // if it's a tuple then we always know the length by the type, but lists must be known // If it's a tuple then we always know the length by the type, but collections might be unknown or have unknown length
if args[0].Type().IsTupleType() || args[0].Length().IsKnown() {
length = args[0].LengthInt() length = args[0].LengthInt()
lengthKnown = true lengthKnown = true
} }

@ -362,9 +362,14 @@ func splitDateFormat(data []byte, atEOF bool) (advance int, token []byte, err er
for i := 1; i < len(data); i++ { for i := 1; i < len(data); i++ {
if data[i] == esc { if data[i] == esc {
if (i + 1) == len(data) { if (i + 1) == len(data) {
// We need at least one more byte to decide if this is an if atEOF {
// escape or a terminator. // We have a closing quote and are at the end of our input
return 0, nil, nil return len(data), data, nil
} else {
// We need at least one more byte to decide if this is an
// escape or a terminator.
return 0, nil, nil
}
} }
if data[i+1] == esc { if data[i+1] == esc {
i++ // doubled-up quotes are an escape sequence i++ // doubled-up quotes are an escape sequence

@ -85,7 +85,7 @@ var FormatListFunc = function.New(&function.Spec{
argTy := arg.Type() argTy := arg.Type()
switch { switch {
case (argTy.IsListType() || argTy.IsSetType() || argTy.IsTupleType()) && !arg.IsNull(): case (argTy.IsListType() || argTy.IsSetType() || argTy.IsTupleType()) && !arg.IsNull():
if !argTy.IsTupleType() && !arg.IsKnown() { if !argTy.IsTupleType() && !(arg.IsKnown() && arg.Length().IsKnown()) {
// We can't iterate this one at all yet then, so we can't // We can't iterate this one at all yet then, so we can't
// yet produce a result. // yet produce a result.
unknowns[i] = true unknowns[i] = true

@ -12,6 +12,7 @@ var JSONEncodeFunc = function.New(&function.Spec{
Name: "val", Name: "val",
Type: cty.DynamicPseudoType, Type: cty.DynamicPseudoType,
AllowDynamicType: true, AllowDynamicType: true,
AllowNull: true,
}, },
}, },
Type: function.StaticReturnType(cty.String), Type: function.StaticReturnType(cty.String),
@ -24,6 +25,10 @@ var JSONEncodeFunc = function.New(&function.Spec{
return cty.UnknownVal(retType), nil return cty.UnknownVal(retType), nil
} }
if val.IsNull() {
return cty.StringVal("null"), nil
}
buf, err := json.Marshal(val, val.Type()) buf, err := json.Marshal(val, val.Type())
if err != nil { if err != nil {
return cty.NilVal, err return cty.NilVal, err

@ -44,7 +44,7 @@ var SetUnionFunc = function.New(&function.Spec{
Type: setOperationReturnType, Type: setOperationReturnType,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Union(s2) return s1.Union(s2)
}), }, true),
}) })
var SetIntersectionFunc = function.New(&function.Spec{ var SetIntersectionFunc = function.New(&function.Spec{
@ -63,7 +63,7 @@ var SetIntersectionFunc = function.New(&function.Spec{
Type: setOperationReturnType, Type: setOperationReturnType,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Intersection(s2) return s1.Intersection(s2)
}), }, false),
}) })
var SetSubtractFunc = function.New(&function.Spec{ var SetSubtractFunc = function.New(&function.Spec{
@ -82,7 +82,7 @@ var SetSubtractFunc = function.New(&function.Spec{
Type: setOperationReturnType, Type: setOperationReturnType,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Subtract(s2) return s1.Subtract(s2)
}), }, false),
}) })
var SetSymmetricDifferenceFunc = function.New(&function.Spec{ var SetSymmetricDifferenceFunc = function.New(&function.Spec{
@ -100,8 +100,8 @@ var SetSymmetricDifferenceFunc = function.New(&function.Spec{
}, },
Type: setOperationReturnType, Type: setOperationReturnType,
Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet { Impl: setOperationImpl(func(s1, s2 cty.ValueSet) cty.ValueSet {
return s1.Subtract(s2) return s1.SymmetricDifference(s2)
}), }, false),
}) })
// SetHasElement determines whether the given set contains the given value as an // SetHasElement determines whether the given set contains the given value as an
@ -163,8 +163,23 @@ func SetSymmetricDifference(sets ...cty.Value) (cty.Value, error) {
func setOperationReturnType(args []cty.Value) (ret cty.Type, err error) { func setOperationReturnType(args []cty.Value) (ret cty.Type, err error) {
var etys []cty.Type var etys []cty.Type
for _, arg := range args { for _, arg := range args {
etys = append(etys, arg.Type().ElementType()) ty := arg.Type().ElementType()
// Do not unify types for empty dynamic pseudo typed collections. These
// will always convert to any other concrete type.
if arg.IsKnown() && arg.LengthInt() == 0 && ty.Equals(cty.DynamicPseudoType) {
continue
}
etys = append(etys, ty)
} }
// If all element types were skipped (due to being empty dynamic collections),
// the return type should also be a set of dynamic pseudo type.
if len(etys) == 0 {
return cty.Set(cty.DynamicPseudoType), nil
}
newEty, _ := convert.UnifyUnsafe(etys) newEty, _ := convert.UnifyUnsafe(etys)
if newEty == cty.NilType { if newEty == cty.NilType {
return cty.NilType, fmt.Errorf("given sets must all have compatible element types") return cty.NilType, fmt.Errorf("given sets must all have compatible element types")
@ -172,13 +187,21 @@ func setOperationReturnType(args []cty.Value) (ret cty.Type, err error) {
return cty.Set(newEty), nil return cty.Set(newEty), nil
} }
func setOperationImpl(f func(s1, s2 cty.ValueSet) cty.ValueSet) function.ImplFunc { func setOperationImpl(f func(s1, s2 cty.ValueSet) cty.ValueSet, allowUnknowns bool) function.ImplFunc {
return func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) { return func(args []cty.Value, retType cty.Type) (ret cty.Value, err error) {
first := args[0] first := args[0]
first, err = convert.Convert(first, retType) first, err = convert.Convert(first, retType)
if err != nil { if err != nil {
return cty.NilVal, function.NewArgError(0, err) return cty.NilVal, function.NewArgError(0, err)
} }
if !allowUnknowns && !first.IsWhollyKnown() {
// This set function can produce a correct result only when all
// elements are known, because eventually knowing the unknown
// values may cause the result to have fewer known elements, or
// might cause a result with no unknown elements at all to become
// one with a different length.
return cty.UnknownVal(retType), nil
}
set := first.AsValueSet() set := first.AsValueSet()
for i, arg := range args[1:] { for i, arg := range args[1:] {
@ -186,6 +209,10 @@ func setOperationImpl(f func(s1, s2 cty.ValueSet) cty.ValueSet) function.ImplFun
if err != nil { if err != nil {
return cty.NilVal, function.NewArgError(i+1, err) return cty.NilVal, function.NewArgError(i+1, err)
} }
if !allowUnknowns && !arg.IsWhollyKnown() {
// (For the same reason as we did this check for "first" above.)
return cty.UnknownVal(retType), nil
}
argSet := arg.AsValueSet() argSet := arg.AsValueSet()
set = f(set, argSet) set = f(set, argSet)

@ -4,6 +4,7 @@ import (
"bytes" "bytes"
"encoding/json" "encoding/json"
"fmt" "fmt"
"sort"
) )
// MarshalJSON is an implementation of json.Marshaler that allows Type // MarshalJSON is an implementation of json.Marshaler that allows Type
@ -52,6 +53,19 @@ func (t Type) MarshalJSON() ([]byte, error) {
} }
buf.WriteString(`["object",`) buf.WriteString(`["object",`)
buf.Write(atysJSON) buf.Write(atysJSON)
if optionals := t.OptionalAttributes(); len(optionals) > 0 {
buf.WriteByte(',')
optionalNames := make([]string, 0, len(optionals))
for k := range optionals {
optionalNames = append(optionalNames, k)
}
sort.Strings(optionalNames)
optionalsJSON, err := json.Marshal(optionalNames)
if err != nil {
return nil, err
}
buf.Write(optionalsJSON)
}
buf.WriteRune(']') buf.WriteRune(']')
return buf.Bytes(), nil return buf.Bytes(), nil
case typeTuple: case typeTuple:
@ -148,7 +162,16 @@ func (t *Type) UnmarshalJSON(buf []byte) error {
if err != nil { if err != nil {
return err return err
} }
*t = Object(atys) if dec.More() {
var optionals []string
err = dec.Decode(&optionals)
if err != nil {
return err
}
*t = ObjectWithOptionalAttrs(atys, optionals)
} else {
*t = Object(atys)
}
case "tuple": case "tuple":
var etys []Type var etys []Type
err = dec.Decode(&etys) err = dec.Decode(&etys)

@ -10,7 +10,7 @@ import (
func marshal(val cty.Value, t cty.Type, path cty.Path, b *bytes.Buffer) error { func marshal(val cty.Value, t cty.Type, path cty.Path, b *bytes.Buffer) error {
if val.IsMarked() { if val.IsMarked() {
return path.NewErrorf("value has marks, so it cannot be seralized") return path.NewErrorf("value has marks, so it cannot be serialized as JSON")
} }
// If we're going to decode as DynamicPseudoType then we need to save // If we're going to decode as DynamicPseudoType then we need to save

@ -67,6 +67,23 @@ func (m ValueMarks) GoString() string {
return s.String() return s.String()
} }
// PathValueMarks is a structure that enables tracking marks
// and the paths where they are located in one type
type PathValueMarks struct {
Path Path
Marks ValueMarks
}
func (p PathValueMarks) Equal(o PathValueMarks) bool {
if !p.Path.Equals(o.Path) {
return false
}
if !p.Marks.Equal(o.Marks) {
return false
}
return true
}
// IsMarked returns true if and only if the receiving value carries at least // IsMarked returns true if and only if the receiving value carries at least
// one mark. A marked value cannot be used directly with integration methods // one mark. A marked value cannot be used directly with integration methods
// without explicitly unmarking it (and retrieving the markings) first. // without explicitly unmarking it (and retrieving the markings) first.
@ -174,6 +191,31 @@ func (val Value) Mark(mark interface{}) Value {
} }
} }
type applyPathValueMarksTransformer struct {
pvm []PathValueMarks
}
func (t *applyPathValueMarksTransformer) Enter(p Path, v Value) (Value, error) {
return v, nil
}
func (t *applyPathValueMarksTransformer) Exit(p Path, v Value) (Value, error) {
for _, path := range t.pvm {
if p.Equals(path.Path) {
return v.WithMarks(path.Marks), nil
}
}
return v, nil
}
// MarkWithPaths accepts a slice of PathValueMarks to apply
// markers to particular paths and returns the marked
// Value.
func (val Value) MarkWithPaths(pvm []PathValueMarks) Value {
ret, _ := TransformWithTransformer(val, &applyPathValueMarksTransformer{pvm})
return ret
}
// Unmark separates the marks of the receiving value from the value itself, // Unmark separates the marks of the receiving value from the value itself,
// removing a new unmarked value and a map (representing a set) of the marks. // removing a new unmarked value and a map (representing a set) of the marks.
// //
@ -191,6 +233,24 @@ func (val Value) Unmark() (Value, ValueMarks) {
}, marks }, marks
} }
type unmarkTransformer struct {
pvm []PathValueMarks
}
func (t *unmarkTransformer) Enter(p Path, v Value) (Value, error) {
unmarkedVal, marks := v.Unmark()
if len(marks) > 0 {
path := make(Path, len(p), len(p)+1)
copy(path, p)
t.pvm = append(t.pvm, PathValueMarks{path, marks})
}
return unmarkedVal, nil
}
func (t *unmarkTransformer) Exit(p Path, v Value) (Value, error) {
return v, nil
}
// UnmarkDeep is similar to Unmark, but it works with an entire nested structure // UnmarkDeep is similar to Unmark, but it works with an entire nested structure
// rather than just the given value directly. // rather than just the given value directly.
// //
@ -198,17 +258,29 @@ func (val Value) Unmark() (Value, ValueMarks) {
// the returned marks set includes the superset of all of the marks encountered // the returned marks set includes the superset of all of the marks encountered
// during the operation. // during the operation.
func (val Value) UnmarkDeep() (Value, ValueMarks) { func (val Value) UnmarkDeep() (Value, ValueMarks) {
t := unmarkTransformer{}
ret, _ := TransformWithTransformer(val, &t)
marks := make(ValueMarks) marks := make(ValueMarks)
ret, _ := Transform(val, func(_ Path, v Value) (Value, error) { for _, pvm := range t.pvm {
unmarkedV, valueMarks := v.Unmark() for m, s := range pvm.Marks {
for m, s := range valueMarks {
marks[m] = s marks[m] = s
} }
return unmarkedV, nil }
})
return ret, marks return ret, marks
} }
// UnmarkDeepWithPaths is like UnmarkDeep, except it returns a slice
// of PathValueMarks rather than a superset of all marks. This allows
// a caller to know which marks are associated with which paths
// in the Value.
func (val Value) UnmarkDeepWithPaths() (Value, []PathValueMarks) {
t := unmarkTransformer{}
ret, _ := TransformWithTransformer(val, &t)
return ret, t.pvm
}
func (val Value) unmarkForce() Value { func (val Value) unmarkForce() Value {
unw, _ := val.Unmark() unw, _ := val.Unmark()
return unw return unw

@ -2,11 +2,13 @@ package cty
import ( import (
"fmt" "fmt"
"sort"
) )
type typeObject struct { type typeObject struct {
typeImplSigil typeImplSigil
AttrTypes map[string]Type AttrTypes map[string]Type
AttrOptional map[string]struct{}
} }
// Object creates an object type with the given attribute types. // Object creates an object type with the given attribute types.
@ -14,14 +16,52 @@ type typeObject struct {
// After a map is passed to this function the caller must no longer access it, // After a map is passed to this function the caller must no longer access it,
// since ownership is transferred to this library. // since ownership is transferred to this library.
func Object(attrTypes map[string]Type) Type { func Object(attrTypes map[string]Type) Type {
return ObjectWithOptionalAttrs(attrTypes, nil)
}
// ObjectWithOptionalAttrs creates an object type where some of its attributes
// are optional.
//
// This function is EXPERIMENTAL. The behavior of the function or of any other
// functions working either directly or indirectly with a type created by
// this function is not currently considered as a compatibility constraint, and
// is subject to change even in minor-version releases of this module. Other
// modules that work with cty types and values may or may not support object
// types with optional attributes; if they do not, their behavior when
// receiving one may be non-ideal.
//
// Optional attributes are significant only when an object type is being used
// as a target type for conversion in the "convert" package. A value of an
// object type always has a value for each of the attributes in the attribute
// types table, with optional values replaced with null during conversion.
//
// All keys in the optional slice must also exist in the attrTypes map. If not,
// this function will panic.
//
// After a map or array is passed to this function the caller must no longer
// access it, since ownership is transferred to this library.
func ObjectWithOptionalAttrs(attrTypes map[string]Type, optional []string) Type {
attrTypesNorm := make(map[string]Type, len(attrTypes)) attrTypesNorm := make(map[string]Type, len(attrTypes))
for k, v := range attrTypes { for k, v := range attrTypes {
attrTypesNorm[NormalizeString(k)] = v attrTypesNorm[NormalizeString(k)] = v
} }
var optionalSet map[string]struct{}
if len(optional) > 0 {
optionalSet = make(map[string]struct{}, len(optional))
for _, k := range optional {
k = NormalizeString(k)
if _, exists := attrTypesNorm[k]; !exists {
panic(fmt.Sprintf("optional contains undeclared attribute %q", k))
}
optionalSet[k] = struct{}{}
}
}
return Type{ return Type{
typeObject{ typeObject{
AttrTypes: attrTypesNorm, AttrTypes: attrTypesNorm,
AttrOptional: optionalSet,
}, },
} }
} }
@ -44,6 +84,11 @@ func (t typeObject) Equals(other Type) bool {
if !oty.Equals(ty) { if !oty.Equals(ty) {
return false return false
} }
_, opt := t.AttrOptional[attr]
_, oopt := ot.AttrOptional[attr]
if opt != oopt {
return false
}
} }
return true return true
@ -66,6 +111,14 @@ func (t typeObject) GoString() string {
if len(t.AttrTypes) == 0 { if len(t.AttrTypes) == 0 {
return "cty.EmptyObject" return "cty.EmptyObject"
} }
if len(t.AttrOptional) > 0 {
opt := make([]string, len(t.AttrOptional))
for k := range t.AttrOptional {
opt = append(opt, k)
}
sort.Strings(opt)
return fmt.Sprintf("cty.ObjectWithOptionalAttrs(%#v, %#v)", t.AttrTypes, opt)
}
return fmt.Sprintf("cty.Object(%#v)", t.AttrTypes) return fmt.Sprintf("cty.Object(%#v)", t.AttrTypes)
} }
@ -133,3 +186,35 @@ func (t Type) AttributeTypes() map[string]Type {
} }
panic("AttributeTypes on non-object Type") panic("AttributeTypes on non-object Type")
} }
// OptionalAttributes returns a map representing the set of attributes
// that are optional. Will panic if the receiver is not an object type
// (use IsObjectType to confirm).
//
// The returned map is part of the internal state of the type, and is provided
// for read access only. It is forbidden for any caller to modify the returned
// map.
func (t Type) OptionalAttributes() map[string]struct{} {
if ot, ok := t.typeImpl.(typeObject); ok {
return ot.AttrOptional
}
panic("OptionalAttributes on non-object Type")
}
// AttributeOptional returns true if the attribute of the given name is
// optional.
//
// Will panic if the receiver is not an object type (use IsObjectType to
// confirm) or if the object type has no such attribute (use HasAttribute to
// confirm).
func (t Type) AttributeOptional(name string) bool {
name = NormalizeString(name)
if ot, ok := t.typeImpl.(typeObject); ok {
if _, hasAttr := ot.AttrTypes[name]; !hasAttr {
panic("no such attribute")
}
_, exists := ot.AttrOptional[name]
return exists
}
panic("AttributeDefaultValue on non-object Type")
}

@ -196,3 +196,9 @@ func (r pathSetRules) Equivalent(a, b interface{}) bool {
return true return true
} }
// SameRules is true if both Rules instances are pathSetRules structs.
func (r pathSetRules) SameRules(other set.Rules) bool {
_, ok := other.(pathSetRules)
return ok
}

@ -22,6 +22,10 @@ type Rules interface {
// though it is *not* required that two values with the same hash value // though it is *not* required that two values with the same hash value
// be equivalent. // be equivalent.
Equivalent(interface{}, interface{}) bool Equivalent(interface{}, interface{}) bool
// SameRules returns true if the instance is equivalent to another Rules
// instance.
SameRules(Rules) bool
} }
// OrderedRules is an extension of Rules that can apply a partial order to // OrderedRules is an extension of Rules that can apply a partial order to

@ -41,7 +41,7 @@ func NewSetFromSlice(rules Rules, vals []interface{}) Set {
} }
func sameRules(s1 Set, s2 Set) bool { func sameRules(s1 Set, s2 Set) bool {
return s1.rules == s2.rules return s1.rules.SameRules(s2.rules)
} }
func mustHaveSameRules(s1 Set, s2 Set) { func mustHaveSameRules(s1 Set, s2 Set) {
@ -53,7 +53,7 @@ func mustHaveSameRules(s1 Set, s2 Set) {
// HasRules returns true if and only if the receiving set has the given rules // HasRules returns true if and only if the receiving set has the given rules
// instance as its rules. // instance as its rules.
func (s Set) HasRules(rules Rules) bool { func (s Set) HasRules(rules Rules) bool {
return s.rules == rules return s.rules.SameRules(rules)
} }
// Rules returns the receiving set's rules instance. // Rules returns the receiving set's rules instance.

@ -65,6 +65,17 @@ func (r setRules) Equivalent(v1 interface{}, v2 interface{}) bool {
return eqv.v == true return eqv.v == true
} }
// SameRules is only true if the other Rules instance is also a setRules struct,
// and the types are considered equal.
func (r setRules) SameRules(other set.Rules) bool {
rules, ok := other.(setRules)
if !ok {
return false
}
return r.Type.Equals(rules.Type)
}
// Less is an implementation of set.OrderedRules so that we can iterate over // Less is an implementation of set.OrderedRules so that we can iterate over
// set elements in a consistent order, where such an order is possible. // set elements in a consistent order, where such an order is possible.
func (r setRules) Less(v1, v2 interface{}) bool { func (r setRules) Less(v1, v2 interface{}) bool {

@ -36,6 +36,9 @@ func (t typeImplSigil) isTypeImpl() typeImplSigil {
// Equals returns true if the other given Type exactly equals the receiver // Equals returns true if the other given Type exactly equals the receiver
// type. // type.
func (t Type) Equals(other Type) bool { func (t Type) Equals(other Type) bool {
if t == NilType || other == NilType {
return t == other
}
return t.typeImpl.Equals(other) return t.typeImpl.Equals(other)
} }
@ -87,7 +90,7 @@ func (t Type) HasDynamicTypes() bool {
case t.IsPrimitiveType(): case t.IsPrimitiveType():
return false return false
case t.IsCollectionType(): case t.IsCollectionType():
return false return t.ElementType().HasDynamicTypes()
case t.IsObjectType(): case t.IsObjectType():
attrTypes := t.AttributeTypes() attrTypes := t.AttributeTypes()
for _, at := range attrTypes { for _, at := range attrTypes {

@ -5,7 +5,8 @@ package cty
type unknownType struct { type unknownType struct {
} }
// Unknown is a special value that can be // unknown is a special value that can be used as the internal value of a
// Value to create a placeholder for a value that isn't yet known.
var unknown interface{} = &unknownType{} var unknown interface{} = &unknownType{}
// UnknownVal returns an Value that represents an unknown value of the given // UnknownVal returns an Value that represents an unknown value of the given

@ -106,3 +106,37 @@ func (val Value) IsWhollyKnown() bool {
return true return true
} }
} }
// HasWhollyKnownType checks if the value is dynamic, or contains any nested
// DynamicVal. This implies that both the value is not known, and the final
// type may change.
func (val Value) HasWhollyKnownType() bool {
// a null dynamic type is known
if val.IsNull() {
return true
}
// an unknown DynamicPseudoType is a DynamicVal, but we don't want to
// check that value for equality here, since this method is used within the
// equality check.
if !val.IsKnown() && val.ty == DynamicPseudoType {
return false
}
if val.CanIterateElements() {
// if the value is not known, then we can look directly at the internal
// types
if !val.IsKnown() {
return !val.ty.HasDynamicTypes()
}
for it := val.ElementIterator(); it.Next(); {
_, ev := it.Element()
if !ev.HasWhollyKnownType() {
return false
}
}
}
return true
}

@ -247,11 +247,6 @@ func SetVal(vals []Value) Value {
val = unmarkedVal val = unmarkedVal
markSets = append(markSets, marks) markSets = append(markSets, marks)
} }
if val.ContainsMarked() {
// FIXME: Allow this, but unmark the values and apply the
// marking to the set itself instead.
panic("set cannot contain marked values")
}
if elementType == DynamicPseudoType { if elementType == DynamicPseudoType {
elementType = val.ty elementType = val.ty
} else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) { } else if val.ty != DynamicPseudoType && !elementType.Equals(val.ty) {

@ -3,7 +3,6 @@ package cty
import ( import (
"fmt" "fmt"
"math/big" "math/big"
"reflect"
"github.com/zclconf/go-cty/cty/set" "github.com/zclconf/go-cty/cty/set"
) )
@ -133,9 +132,9 @@ func (val Value) Equals(other Value) Value {
case val.IsKnown() && !other.IsKnown(): case val.IsKnown() && !other.IsKnown():
switch { switch {
case val.IsNull(), other.ty.HasDynamicTypes(): case val.IsNull(), other.ty.HasDynamicTypes():
// If known is Null, we need to wait for the unkown value since // If known is Null, we need to wait for the unknown value since
// nulls of any type are equal. // nulls of any type are equal.
// An unkown with a dynamic type compares as unknown, which we need // An unknown with a dynamic type compares as unknown, which we need
// to check before the type comparison below. // to check before the type comparison below.
return UnknownVal(Bool) return UnknownVal(Bool)
case !val.ty.Equals(other.ty): case !val.ty.Equals(other.ty):
@ -148,9 +147,9 @@ func (val Value) Equals(other Value) Value {
case other.IsKnown() && !val.IsKnown(): case other.IsKnown() && !val.IsKnown():
switch { switch {
case other.IsNull(), val.ty.HasDynamicTypes(): case other.IsNull(), val.ty.HasDynamicTypes():
// If known is Null, we need to wait for the unkown value since // If known is Null, we need to wait for the unknown value since
// nulls of any type are equal. // nulls of any type are equal.
// An unkown with a dynamic type compares as unknown, which we need // An unknown with a dynamic type compares as unknown, which we need
// to check before the type comparison below. // to check before the type comparison below.
return UnknownVal(Bool) return UnknownVal(Bool)
case !other.ty.Equals(val.ty): case !other.ty.Equals(val.ty):
@ -171,7 +170,15 @@ func (val Value) Equals(other Value) Value {
return BoolVal(false) return BoolVal(false)
} }
if val.ty.HasDynamicTypes() || other.ty.HasDynamicTypes() { // Check if there are any nested dynamic values making this comparison
// unknown.
if !val.HasWhollyKnownType() || !other.HasWhollyKnownType() {
// Even if we have dynamic values, we can still determine inequality if
// there is no way the types could later conform.
if val.ty.TestConformance(other.ty) != nil && other.ty.TestConformance(val.ty) != nil {
return BoolVal(false)
}
return UnknownVal(Bool) return UnknownVal(Bool)
} }
@ -262,24 +269,26 @@ func (val Value) Equals(other Value) Value {
s2 := other.v.(set.Set) s2 := other.v.(set.Set)
equal := true equal := true
// Note that by our definition of sets it's never possible for two // Two sets are equal if all of their values are known and all values
// sets that contain unknown values (directly or indicrectly) to // in one are also in the other.
// ever be equal, even if they are otherwise identical. for it := s1.Iterator(); it.Next(); {
rv := it.Value()
// FIXME: iterating both lists and checking each item is not the if rv == unknown { // "unknown" is the internal representation of unknown-ness
// ideal implementation here, but it works with the primitives we return UnknownVal(Bool)
// have in the set implementation. Perhaps the set implementation }
// can provide its own equality test later. if !s2.Has(rv) {
s1.EachValue(func(v interface{}) {
if !s2.Has(v) {
equal = false equal = false
} }
}) }
s2.EachValue(func(v interface{}) { for it := s2.Iterator(); it.Next(); {
if !s1.Has(v) { rv := it.Value()
if rv == unknown { // "unknown" is the internal representation of unknown-ness
return UnknownVal(Bool)
}
if !s1.Has(rv) {
equal = false equal = false
} }
}) }
result = equal result = equal
case ty.IsMapType(): case ty.IsMapType():
@ -454,17 +463,32 @@ func (val Value) RawEquals(other Value) bool {
return true return true
} }
return false return false
case ty.IsSetType(): case ty.IsSetType():
s1 := val.v.(set.Set) // Convert the set values into a slice so that we can compare each
s2 := other.v.(set.Set) // value. This is safe because the underlying sets are ordered (see
// setRules in set_internals.go), and so the results are guaranteed to
// be in a consistent order for two equal sets
setList1 := val.AsValueSlice()
setList2 := other.AsValueSlice()
// If both physical sets have the same length and they have all of their
// _known_ values in common, we know that both sets also have the same
// number of unknown values.
if len(setList1) != len(setList2) {
return false
}
for i := range setList1 {
eq := setList1[i].RawEquals(setList2[i])
if !eq {
return false
}
}
// Since we're intentionally ignoring our rule that two unknowns // If we got here without returning false already then our sets are
// are never equal, we can cheat here. // equal enough for RawEquals purposes.
// (This isn't 100% right since e.g. it will fail if the set contains return true
// numbers that are infinite, which DeepEqual can't compare properly.
// We're accepting that limitation for simplicity here, since this
// function is here primarily for testing.)
return reflect.DeepEqual(s1, s2)
case ty.IsMapType(): case ty.IsMapType():
ety := ty.typeImpl.(typeMap).ElementTypeT ety := ty.typeImpl.(typeMap).ElementTypeT
@ -572,8 +596,25 @@ func (val Value) Multiply(other Value) Value {
return *shortCircuit return *shortCircuit
} }
ret := new(big.Float) // find the larger precision of the arguments
resPrec := val.v.(*big.Float).Prec()
otherPrec := other.v.(*big.Float).Prec()
if otherPrec > resPrec {
resPrec = otherPrec
}
// make sure we have enough precision for the product
ret := new(big.Float).SetPrec(512)
ret.Mul(val.v.(*big.Float), other.v.(*big.Float)) ret.Mul(val.v.(*big.Float), other.v.(*big.Float))
// now reduce the precision back to the greater argument, or the minimum
// required by the product.
minPrec := ret.MinPrec()
if minPrec > resPrec {
resPrec = minPrec
}
ret.SetPrec(resPrec)
return NumberVal(ret) return NumberVal(ret)
} }
@ -645,11 +686,14 @@ func (val Value) Modulo(other Value) Value {
// FIXME: This is a bit clumsy. Should come back later and see if there's a // FIXME: This is a bit clumsy. Should come back later and see if there's a
// more straightforward way to do this. // more straightforward way to do this.
rat := val.Divide(other) rat := val.Divide(other)
ratFloorInt := &big.Int{} ratFloorInt, _ := rat.v.(*big.Float).Int(nil)
rat.v.(*big.Float).Int(ratFloorInt)
work := (&big.Float{}).SetInt(ratFloorInt) // start with a copy of the original larger value so that we do not lose
// precision.
v := val.v.(*big.Float)
work := new(big.Float).Copy(v).SetInt(ratFloorInt)
work.Mul(other.v.(*big.Float), work) work.Mul(other.v.(*big.Float), work)
work.Sub(val.v.(*big.Float), work) work.Sub(v, work)
return NumberVal(work) return NumberVal(work)
} }
@ -947,8 +991,7 @@ func (val Value) HasElement(elem Value) Value {
// If the receiver is null then this function will panic. // If the receiver is null then this function will panic.
// //
// Note that Length is not supported for strings. To determine the length // Note that Length is not supported for strings. To determine the length
// of a string, call AsString and take the length of the native Go string // of a string, use the Length function in funcs/stdlib.
// that is returned.
func (val Value) Length() Value { func (val Value) Length() Value {
if val.IsMarked() { if val.IsMarked() {
val, valMarks := val.Unmark() val, valMarks := val.Unmark()
@ -963,6 +1006,25 @@ func (val Value) Length() Value {
if !val.IsKnown() { if !val.IsKnown() {
return UnknownVal(Number) return UnknownVal(Number)
} }
if val.Type().IsSetType() {
// The Length rules are a little different for sets because if any
// unknown values are present then the values they are standing in for
// may or may not be equal to other elements in the set, and thus they
// may or may not coalesce with other elements and produce fewer
// items in the resulting set.
storeLength := int64(val.v.(set.Set).Length())
if storeLength == 1 || val.IsWhollyKnown() {
// If our set is wholly known then we know its length.
//
// We also know the length if the physical store has only one
// element, even if that element is unknown, because there's
// nothing else in the set for it to coalesce with and a single
// unknown value cannot represent more than one known value.
return NumberIntVal(storeLength)
}
// Otherwise, we cannot predict the length.
return UnknownVal(Number)
}
return NumberIntVal(int64(val.LengthInt())) return NumberIntVal(int64(val.LengthInt()))
} }
@ -972,6 +1034,13 @@ func (val Value) Length() Value {
// //
// This is an integration method provided for the convenience of code bridging // This is an integration method provided for the convenience of code bridging
// into Go's type system. // into Go's type system.
//
// For backward compatibility with an earlier implementation error, LengthInt's
// result can disagree with Length's result for any set containing unknown
// values. Length can potentially indicate the set's length is unknown in that
// case, whereas LengthInt will return the maximum possible length as if the
// unknown values were each a placeholder for a value not equal to any other
// value in the set.
func (val Value) LengthInt() int { func (val Value) LengthInt() int {
val.assertUnmarked() val.assertUnmarked()
if val.Type().IsTupleType() { if val.Type().IsTupleType() {
@ -995,6 +1064,15 @@ func (val Value) LengthInt() int {
return len(val.v.([]interface{})) return len(val.v.([]interface{}))
case val.ty.IsSetType(): case val.ty.IsSetType():
// NOTE: This is technically not correct in cases where the set
// contains unknown values, because in that case we can't know how
// many known values those unknown values are standing in for -- they
// might coalesce with other values once known.
//
// However, this incorrect behavior is preserved for backward
// compatibility with callers that were relying on LengthInt rather
// than calling Length. Instead of panicking when a set contains an
// unknown value, LengthInt returns the largest possible length.
return val.v.(set.Set).Length() return val.v.(set.Set).Length()
case val.ty.IsMapType(): case val.ty.IsMapType():

@ -61,6 +61,34 @@ func walk(path Path, val Value, cb func(Path, Value) (bool, error)) error {
return nil return nil
} }
// Transformer is the interface used to optionally transform values in a
// possibly-complex structure. The Enter method is called before traversing
// through a given path, and the Exit method is called when traversal of a
// path is complete.
//
// Use Enter when you want to transform a complex value before traversal
// (preorder), and Exit when you want to transform a value after traversal
// (postorder).
//
// The path passed to the given function may not be used after that function
// returns, since its backing array is re-used for other calls.
type Transformer interface {
Enter(Path, Value) (Value, error)
Exit(Path, Value) (Value, error)
}
type postorderTransformer struct {
callback func(Path, Value) (Value, error)
}
func (t *postorderTransformer) Enter(p Path, v Value) (Value, error) {
return v, nil
}
func (t *postorderTransformer) Exit(p Path, v Value) (Value, error) {
return t.callback(p, v)
}
// Transform visits all of the values in a possibly-complex structure, // Transform visits all of the values in a possibly-complex structure,
// calling a given function for each value which has an opportunity to // calling a given function for each value which has an opportunity to
// replace that value. // replace that value.
@ -77,7 +105,7 @@ func walk(path Path, val Value, cb func(Path, Value) (bool, error)) error {
// value constructor functions. An easy way to preserve invariants is to // value constructor functions. An easy way to preserve invariants is to
// ensure that the transform function never changes the value type. // ensure that the transform function never changes the value type.
// //
// The callback function my halt the walk altogether by // The callback function may halt the walk altogether by
// returning a non-nil error. If the returned error is about the element // returning a non-nil error. If the returned error is about the element
// currently being visited, it is recommended to use the provided path // currently being visited, it is recommended to use the provided path
// value to produce a PathError describing that context. // value to produce a PathError describing that context.
@ -86,10 +114,23 @@ func walk(path Path, val Value, cb func(Path, Value) (bool, error)) error {
// returns, since its backing array is re-used for other calls. // returns, since its backing array is re-used for other calls.
func Transform(val Value, cb func(Path, Value) (Value, error)) (Value, error) { func Transform(val Value, cb func(Path, Value) (Value, error)) (Value, error) {
var path Path var path Path
return transform(path, val, cb) return transform(path, val, &postorderTransformer{cb})
}
// TransformWithTransformer allows the caller to more closely control the
// traversal used for transformation. See the documentation for Transformer for
// more details.
func TransformWithTransformer(val Value, t Transformer) (Value, error) {
var path Path
return transform(path, val, t)
} }
func transform(path Path, val Value, cb func(Path, Value) (Value, error)) (Value, error) { func transform(path Path, val Value, t Transformer) (Value, error) {
val, err := t.Enter(path, val)
if err != nil {
return DynamicVal, err
}
ty := val.Type() ty := val.Type()
var newVal Value var newVal Value
@ -112,7 +153,7 @@ func transform(path Path, val Value, cb func(Path, Value) (Value, error)) (Value
path := append(path, IndexStep{ path := append(path, IndexStep{
Key: kv, Key: kv,
}) })
newEv, err := transform(path, ev, cb) newEv, err := transform(path, ev, t)
if err != nil { if err != nil {
return DynamicVal, err return DynamicVal, err
} }
@ -143,7 +184,7 @@ func transform(path Path, val Value, cb func(Path, Value) (Value, error)) (Value
path := append(path, IndexStep{ path := append(path, IndexStep{
Key: kv, Key: kv,
}) })
newEv, err := transform(path, ev, cb) newEv, err := transform(path, ev, t)
if err != nil { if err != nil {
return DynamicVal, err return DynamicVal, err
} }
@ -165,7 +206,7 @@ func transform(path Path, val Value, cb func(Path, Value) (Value, error)) (Value
path := append(path, GetAttrStep{ path := append(path, GetAttrStep{
Name: name, Name: name,
}) })
newAV, err := transform(path, av, cb) newAV, err := transform(path, av, t)
if err != nil { if err != nil {
return DynamicVal, err return DynamicVal, err
} }
@ -178,5 +219,9 @@ func transform(path Path, val Value, cb func(Path, Value) (Value, error)) (Value
newVal = val newVal = val
} }
return cb(path, newVal) newVal, err = t.Exit(path, newVal)
if err != nil {
return DynamicVal, err
}
return newVal, err
} }

@ -0,0 +1,35 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package bcrypt
import "encoding/base64"
const alphabet = "./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
var bcEncoding = base64.NewEncoding(alphabet)
func base64Encode(src []byte) []byte {
n := bcEncoding.EncodedLen(len(src))
dst := make([]byte, n)
bcEncoding.Encode(dst, src)
for dst[n-1] == '=' {
n--
}
return dst[:n]
}
func base64Decode(src []byte) ([]byte, error) {
numOfEquals := 4 - (len(src) % 4)
for i := 0; i < numOfEquals; i++ {
src = append(src, '=')
}
dst := make([]byte, bcEncoding.DecodedLen(len(src)))
n, err := bcEncoding.Decode(dst, src)
if err != nil {
return nil, err
}
return dst[:n], nil
}

@ -0,0 +1,295 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bcrypt implements Provos and Mazières's bcrypt adaptive hashing
// algorithm. See http://www.usenix.org/event/usenix99/provos/provos.pdf
package bcrypt // import "golang.org/x/crypto/bcrypt"
// The code is a port of Provos and Mazières's C implementation.
import (
"crypto/rand"
"crypto/subtle"
"errors"
"fmt"
"io"
"strconv"
"golang.org/x/crypto/blowfish"
)
const (
MinCost int = 4 // the minimum allowable cost as passed in to GenerateFromPassword
MaxCost int = 31 // the maximum allowable cost as passed in to GenerateFromPassword
DefaultCost int = 10 // the cost that will actually be set if a cost below MinCost is passed into GenerateFromPassword
)
// The error returned from CompareHashAndPassword when a password and hash do
// not match.
var ErrMismatchedHashAndPassword = errors.New("crypto/bcrypt: hashedPassword is not the hash of the given password")
// The error returned from CompareHashAndPassword when a hash is too short to
// be a bcrypt hash.
var ErrHashTooShort = errors.New("crypto/bcrypt: hashedSecret too short to be a bcrypted password")
// The error returned from CompareHashAndPassword when a hash was created with
// a bcrypt algorithm newer than this implementation.
type HashVersionTooNewError byte
func (hv HashVersionTooNewError) Error() string {
return fmt.Sprintf("crypto/bcrypt: bcrypt algorithm version '%c' requested is newer than current version '%c'", byte(hv), majorVersion)
}
// The error returned from CompareHashAndPassword when a hash starts with something other than '$'
type InvalidHashPrefixError byte
func (ih InvalidHashPrefixError) Error() string {
return fmt.Sprintf("crypto/bcrypt: bcrypt hashes must start with '$', but hashedSecret started with '%c'", byte(ih))
}
type InvalidCostError int
func (ic InvalidCostError) Error() string {
return fmt.Sprintf("crypto/bcrypt: cost %d is outside allowed range (%d,%d)", int(ic), int(MinCost), int(MaxCost))
}
const (
majorVersion = '2'
minorVersion = 'a'
maxSaltSize = 16
maxCryptedHashSize = 23
encodedSaltSize = 22
encodedHashSize = 31
minHashSize = 59
)
// magicCipherData is an IV for the 64 Blowfish encryption calls in
// bcrypt(). It's the string "OrpheanBeholderScryDoubt" in big-endian bytes.
var magicCipherData = []byte{
0x4f, 0x72, 0x70, 0x68,
0x65, 0x61, 0x6e, 0x42,
0x65, 0x68, 0x6f, 0x6c,
0x64, 0x65, 0x72, 0x53,
0x63, 0x72, 0x79, 0x44,
0x6f, 0x75, 0x62, 0x74,
}
type hashed struct {
hash []byte
salt []byte
cost int // allowed range is MinCost to MaxCost
major byte
minor byte
}
// GenerateFromPassword returns the bcrypt hash of the password at the given
// cost. If the cost given is less than MinCost, the cost will be set to
// DefaultCost, instead. Use CompareHashAndPassword, as defined in this package,
// to compare the returned hashed password with its cleartext version.
func GenerateFromPassword(password []byte, cost int) ([]byte, error) {
p, err := newFromPassword(password, cost)
if err != nil {
return nil, err
}
return p.Hash(), nil
}
// CompareHashAndPassword compares a bcrypt hashed password with its possible
// plaintext equivalent. Returns nil on success, or an error on failure.
func CompareHashAndPassword(hashedPassword, password []byte) error {
p, err := newFromHash(hashedPassword)
if err != nil {
return err
}
otherHash, err := bcrypt(password, p.cost, p.salt)
if err != nil {
return err
}
otherP := &hashed{otherHash, p.salt, p.cost, p.major, p.minor}
if subtle.ConstantTimeCompare(p.Hash(), otherP.Hash()) == 1 {
return nil
}
return ErrMismatchedHashAndPassword
}
// Cost returns the hashing cost used to create the given hashed
// password. When, in the future, the hashing cost of a password system needs
// to be increased in order to adjust for greater computational power, this
// function allows one to establish which passwords need to be updated.
func Cost(hashedPassword []byte) (int, error) {
p, err := newFromHash(hashedPassword)
if err != nil {
return 0, err
}
return p.cost, nil
}
func newFromPassword(password []byte, cost int) (*hashed, error) {
if cost < MinCost {
cost = DefaultCost
}
p := new(hashed)
p.major = majorVersion
p.minor = minorVersion
err := checkCost(cost)
if err != nil {
return nil, err
}
p.cost = cost
unencodedSalt := make([]byte, maxSaltSize)
_, err = io.ReadFull(rand.Reader, unencodedSalt)
if err != nil {
return nil, err
}
p.salt = base64Encode(unencodedSalt)
hash, err := bcrypt(password, p.cost, p.salt)
if err != nil {
return nil, err
}
p.hash = hash
return p, err
}
func newFromHash(hashedSecret []byte) (*hashed, error) {
if len(hashedSecret) < minHashSize {
return nil, ErrHashTooShort
}
p := new(hashed)
n, err := p.decodeVersion(hashedSecret)
if err != nil {
return nil, err
}
hashedSecret = hashedSecret[n:]
n, err = p.decodeCost(hashedSecret)
if err != nil {
return nil, err
}
hashedSecret = hashedSecret[n:]
// The "+2" is here because we'll have to append at most 2 '=' to the salt
// when base64 decoding it in expensiveBlowfishSetup().
p.salt = make([]byte, encodedSaltSize, encodedSaltSize+2)
copy(p.salt, hashedSecret[:encodedSaltSize])
hashedSecret = hashedSecret[encodedSaltSize:]
p.hash = make([]byte, len(hashedSecret))
copy(p.hash, hashedSecret)
return p, nil
}
func bcrypt(password []byte, cost int, salt []byte) ([]byte, error) {
cipherData := make([]byte, len(magicCipherData))
copy(cipherData, magicCipherData)
c, err := expensiveBlowfishSetup(password, uint32(cost), salt)
if err != nil {
return nil, err
}
for i := 0; i < 24; i += 8 {
for j := 0; j < 64; j++ {
c.Encrypt(cipherData[i:i+8], cipherData[i:i+8])
}
}
// Bug compatibility with C bcrypt implementations. We only encode 23 of
// the 24 bytes encrypted.
hsh := base64Encode(cipherData[:maxCryptedHashSize])
return hsh, nil
}
func expensiveBlowfishSetup(key []byte, cost uint32, salt []byte) (*blowfish.Cipher, error) {
csalt, err := base64Decode(salt)
if err != nil {
return nil, err
}
// Bug compatibility with C bcrypt implementations. They use the trailing
// NULL in the key string during expansion.
// We copy the key to prevent changing the underlying array.
ckey := append(key[:len(key):len(key)], 0)
c, err := blowfish.NewSaltedCipher(ckey, csalt)
if err != nil {
return nil, err
}
var i, rounds uint64
rounds = 1 << cost
for i = 0; i < rounds; i++ {
blowfish.ExpandKey(ckey, c)
blowfish.ExpandKey(csalt, c)
}
return c, nil
}
func (p *hashed) Hash() []byte {
arr := make([]byte, 60)
arr[0] = '$'
arr[1] = p.major
n := 2
if p.minor != 0 {
arr[2] = p.minor
n = 3
}
arr[n] = '$'
n++
copy(arr[n:], []byte(fmt.Sprintf("%02d", p.cost)))
n += 2
arr[n] = '$'
n++
copy(arr[n:], p.salt)
n += encodedSaltSize
copy(arr[n:], p.hash)
n += encodedHashSize
return arr[:n]
}
func (p *hashed) decodeVersion(sbytes []byte) (int, error) {
if sbytes[0] != '$' {
return -1, InvalidHashPrefixError(sbytes[0])
}
if sbytes[1] > majorVersion {
return -1, HashVersionTooNewError(sbytes[1])
}
p.major = sbytes[1]
n := 3
if sbytes[2] != '$' {
p.minor = sbytes[2]
n++
}
return n, nil
}
// sbytes should begin where decodeVersion left off.
func (p *hashed) decodeCost(sbytes []byte) (int, error) {
cost, err := strconv.Atoi(string(sbytes[0:2]))
if err != nil {
return -1, err
}
err = checkCost(cost)
if err != nil {
return -1, err
}
p.cost = cost
return 3, nil
}
func (p *hashed) String() string {
return fmt.Sprintf("&{hash: %#v, salt: %#v, cost: %d, major: %c, minor: %c}", string(p.hash), p.salt, p.cost, p.major, p.minor)
}
func checkCost(cost int) error {
if cost < MinCost || cost > MaxCost {
return InvalidCostError(cost)
}
return nil
}

18
vendor/modules.txt vendored

@ -32,6 +32,8 @@ github.com/agext/levenshtein
# github.com/agl/ed25519 v0.0.0-20170116200512-5312a6153412 # github.com/agl/ed25519 v0.0.0-20170116200512-5312a6153412
github.com/agl/ed25519 github.com/agl/ed25519
github.com/agl/ed25519/edwards25519 github.com/agl/ed25519/edwards25519
# github.com/apparentlymart/go-cidr v1.0.1
github.com/apparentlymart/go-cidr/cidr
# github.com/apparentlymart/go-textseg/v12 v12.0.0 # github.com/apparentlymart/go-textseg/v12 v12.0.0
github.com/apparentlymart/go-textseg/v12/textseg github.com/apparentlymart/go-textseg/v12/textseg
# github.com/beorn7/perks v1.0.1 # github.com/beorn7/perks v1.0.1
@ -201,6 +203,8 @@ github.com/google/go-cmp/cmp/internal/value
github.com/google/gofuzz github.com/google/gofuzz
# github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510 # github.com/google/shlex v0.0.0-20191202100458-e7afc7fbc510
github.com/google/shlex github.com/google/shlex
# github.com/google/uuid v1.1.1
github.com/google/uuid
# github.com/googleapis/gnostic v0.4.1 # github.com/googleapis/gnostic v0.4.1
github.com/googleapis/gnostic/compiler github.com/googleapis/gnostic/compiler
github.com/googleapis/gnostic/extensions github.com/googleapis/gnostic/extensions
@ -211,9 +215,16 @@ github.com/gorilla/mux
github.com/grpc-ecosystem/go-grpc-middleware github.com/grpc-ecosystem/go-grpc-middleware
# github.com/grpc-ecosystem/grpc-opentracing v0.0.0-20180507213350-8e809c8a8645 # github.com/grpc-ecosystem/grpc-opentracing v0.0.0-20180507213350-8e809c8a8645
github.com/grpc-ecosystem/grpc-opentracing/go/otgrpc github.com/grpc-ecosystem/grpc-opentracing/go/otgrpc
# github.com/hashicorp/hcl/v2 v2.6.0 # github.com/hashicorp/go-cty-funcs v0.0.0-20200930094925-2721b1e36840
github.com/hashicorp/go-cty-funcs/cidr
github.com/hashicorp/go-cty-funcs/crypto
github.com/hashicorp/go-cty-funcs/encoding
github.com/hashicorp/go-cty-funcs/uuid
# github.com/hashicorp/hcl/v2 v2.8.1
github.com/hashicorp/hcl/v2 github.com/hashicorp/hcl/v2
github.com/hashicorp/hcl/v2/ext/customdecode github.com/hashicorp/hcl/v2/ext/customdecode
github.com/hashicorp/hcl/v2/ext/tryfunc
github.com/hashicorp/hcl/v2/ext/typeexpr
github.com/hashicorp/hcl/v2/ext/userfunc github.com/hashicorp/hcl/v2/ext/userfunc
github.com/hashicorp/hcl/v2/gohcl github.com/hashicorp/hcl/v2/gohcl
github.com/hashicorp/hcl/v2/hclsimple github.com/hashicorp/hcl/v2/hclsimple
@ -352,7 +363,7 @@ github.com/xeipuuv/gojsonpointer
github.com/xeipuuv/gojsonreference github.com/xeipuuv/gojsonreference
# github.com/xeipuuv/gojsonschema v1.2.0 # github.com/xeipuuv/gojsonschema v1.2.0
github.com/xeipuuv/gojsonschema github.com/xeipuuv/gojsonschema
# github.com/zclconf/go-cty v1.4.0 # github.com/zclconf/go-cty v1.7.1
github.com/zclconf/go-cty/cty github.com/zclconf/go-cty/cty
github.com/zclconf/go-cty/cty/convert github.com/zclconf/go-cty/cty/convert
github.com/zclconf/go-cty/cty/function github.com/zclconf/go-cty/cty/function
@ -367,6 +378,7 @@ go.opencensus.io/trace
go.opencensus.io/trace/internal go.opencensus.io/trace/internal
go.opencensus.io/trace/tracestate go.opencensus.io/trace/tracestate
# golang.org/x/crypto v0.0.0-20201117144127-c1f2f97bffc9 # golang.org/x/crypto v0.0.0-20201117144127-c1f2f97bffc9
golang.org/x/crypto/bcrypt
golang.org/x/crypto/blowfish golang.org/x/crypto/blowfish
golang.org/x/crypto/chacha20 golang.org/x/crypto/chacha20
golang.org/x/crypto/curve25519 golang.org/x/crypto/curve25519
@ -397,7 +409,7 @@ golang.org/x/oauth2/google
golang.org/x/oauth2/internal golang.org/x/oauth2/internal
golang.org/x/oauth2/jws golang.org/x/oauth2/jws
golang.org/x/oauth2/jwt golang.org/x/oauth2/jwt
# golang.org/x/sync v0.0.0-20200625203802-6e8e738ad208 # golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9
golang.org/x/sync/errgroup golang.org/x/sync/errgroup
golang.org/x/sync/semaphore golang.org/x/sync/semaphore
# golang.org/x/sys v0.0.0-20201013081832-0aaa2718063a # golang.org/x/sys v0.0.0-20201013081832-0aaa2718063a

Loading…
Cancel
Save