Merge pull request #1208 from jedevc/kubernetes-builder-docs
docs: add new kubernetes build driver docspull/1217/head
commit
fecc6958cb
@ -0,0 +1,236 @@
|
||||
---
|
||||
title: "Kubernetes builder"
|
||||
description: "Connect buildx to a kubernetes cluster"
|
||||
keywords: build, buildx, buildkit
|
||||
---
|
||||
|
||||
The buildx kubernetes driver allows connecting your local development or ci
|
||||
environments to your kubernetes cluster to allow access to more powerful
|
||||
and varied compute resources.
|
||||
|
||||
This guide assumes you already have an existing kubernetes cluster - if you don't already
|
||||
have one, you can easily follow along by installing
|
||||
[minikube](https://minikube.sigs.k8s.io/docs/).
|
||||
|
||||
Before connecting buildx to your cluster, you may want to create a dedicated
|
||||
namespace using `kubectl` to keep your buildx-managed resources separate. You
|
||||
can call your namespace anything you want, or use the existing `default`
|
||||
namespace, but we'll create a `buildkit` namespace for now:
|
||||
|
||||
```console
|
||||
$ kubectl create namespace buildkit
|
||||
```
|
||||
|
||||
Then create a new buildx builder:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--bootstrap \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--driver-opt=namespace=buildkit
|
||||
```
|
||||
|
||||
This assumes that the kubernetes cluster you want to connect to is currently
|
||||
accessible via the kubectl command, with the `KUBECONFIG` environment variable
|
||||
[set appropriately](https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable)
|
||||
if neccessary.
|
||||
|
||||
You should now be able to see the builder in the list of buildx builders:
|
||||
|
||||
```console
|
||||
$ docker buildx ls
|
||||
NAME/NODE DRIVER/ENDPOINT STATUS PLATFORMS
|
||||
kube kubernetes
|
||||
kube0-6977cdcb75-k9h9m running linux/amd64, linux/amd64/v2, linux/amd64/v3, linux/386
|
||||
default * docker
|
||||
default default running linux/amd64, linux/386
|
||||
```
|
||||
|
||||
The buildx driver creates the neccessary resources on your cluster in the
|
||||
specified namespace (in this case, `buildkit`), while keeping your
|
||||
driver configuration locally. You can see the running pods with:
|
||||
|
||||
```console
|
||||
$ kubectl -n buildkit get deployments
|
||||
NAME READY UP-TO-DATE AVAILABLE AGE
|
||||
kube0 1/1 1 1 32s
|
||||
|
||||
$ kubectl -n buildkit get pods
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
kube0-6977cdcb75-k9h9m 1/1 Running 0 32s
|
||||
```
|
||||
|
||||
You can use your new builder by including the `--builder` flag when running
|
||||
buildx commands. For example (replacing `<user>` and `<image>` with your Docker
|
||||
Hub username and desired image output respectively):
|
||||
|
||||
```console
|
||||
$ docker buildx build . \
|
||||
--builder=kube \
|
||||
-t <user>/<image> \
|
||||
--push
|
||||
```
|
||||
|
||||
## Scaling Buildkit
|
||||
|
||||
One of the main advantages of the kubernetes builder is that you can easily
|
||||
scale your builder up and down to handle increased build load. These controls
|
||||
are exposed via the following options:
|
||||
|
||||
- `replicas=N`
|
||||
- This scales the number of buildkit pods to the desired size. By default,
|
||||
only a single pod will be created, but increasing this allows taking of
|
||||
advantage of multiple nodes in your cluster.
|
||||
- `requests.cpu`, `requests.memory`, `limits.cpu`, `limits.memory`
|
||||
- These options allow requesting and limiting the resources available to each
|
||||
buildkit pod according to the official kubernetes documentation
|
||||
[here](https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/).
|
||||
|
||||
For example, to create 4 replica buildkit pods:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--bootstrap \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--driver-opt=namespace=buildkit,replicas=4
|
||||
```
|
||||
|
||||
Listing the pods, we get:
|
||||
|
||||
```console
|
||||
$ kubectl -n buildkit get deployments
|
||||
NAME READY UP-TO-DATE AVAILABLE AGE
|
||||
kube0 4/4 4 4 8s
|
||||
|
||||
$ kubectl -n buildkit get pods
|
||||
NAME READY STATUS RESTARTS AGE
|
||||
kube0-6977cdcb75-48ld2 1/1 Running 0 8s
|
||||
kube0-6977cdcb75-rkc6b 1/1 Running 0 8s
|
||||
kube0-6977cdcb75-vb4ks 1/1 Running 0 8s
|
||||
kube0-6977cdcb75-z4fzs 1/1 Running 0 8s
|
||||
```
|
||||
|
||||
Additionally, you can use the `loadbalance=(sticky|random)` option to control
|
||||
the load-balancing behavior when there are multiple replicas. While `random`
|
||||
should selects random nodes from the available pool, which should provide
|
||||
better balancing across all replicas, `sticky` (the default) attempts to
|
||||
connect the same build performed multiple times to the same node each time,
|
||||
ensuring better local cache utilization.
|
||||
|
||||
For more information on scalability, see the options for [buildx create](https://docs.docker.com/engine/reference/commandline/buildx_create/#kubernetes-driver-1).
|
||||
|
||||
## Multi-arch builds
|
||||
|
||||
The kubernetes buildx driver has support for creating [multi-architecture images](https://docs.docker.com/buildx/working-with-buildx/#build-multi-platform-images),
|
||||
for easily building for multiple platforms at once.
|
||||
|
||||
### QEMU
|
||||
|
||||
Like the other containerized driver `docker-container`, the kubernetes driver
|
||||
also supports using [QEMU](https://www.qemu.org/) (user mode) to build
|
||||
non-native platforms. If using a default setup like above, no extra setup
|
||||
should be needed, you should just be able to start building for other
|
||||
architectures, by including the `--platform` flag.
|
||||
|
||||
For example, to build a Linux image for `amd64` and `arm64`:
|
||||
|
||||
```console
|
||||
$ docker buildx build . \
|
||||
--builder=kube \
|
||||
--platform=linux/amd64,linux/arm64 \
|
||||
-t <user>/<image> \
|
||||
--push
|
||||
```
|
||||
|
||||
> **Warning**
|
||||
> QEMU performs full-system emulation of non-native platforms, which is *much*
|
||||
> slower than native builds. Compute-heavy tasks like compilation and
|
||||
> compression/decompression will likely take a large performance hit.
|
||||
|
||||
Note, if you're using a custom buildkit image using the `image=<image>` driver
|
||||
option, or invoking non-native binaries from within your build, you may need to
|
||||
explicitly enable QEMU using the `qemu.install` option during driver creation:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--bootstrap \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--driver-opt=namespace=buildkit,qemu.install=true
|
||||
```
|
||||
|
||||
### Native
|
||||
|
||||
If you have access to cluster nodes of different architectures, we can
|
||||
configure the kubernetes driver to take advantage of these for native builds.
|
||||
To do this, we need to use the `--append` feature of `docker buildx create`.
|
||||
|
||||
To start, we can create our builder with explicit support for a single
|
||||
architecture, `amd64`:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--bootstrap \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--platform=linux/amd64 \
|
||||
--node=builder-amd64 \
|
||||
--driver-opt=namespace=buildkit,nodeselector="kubernetes.io/arch=amd64"
|
||||
```
|
||||
|
||||
This creates a buildx builder `kube` containing a single builder node `builder-amd64`.
|
||||
Note that the buildx concept of a node is not the same as the kubernetes
|
||||
concept of a node - the buildx node in this case could connect multiple
|
||||
kubernetes nodes of the same architecture together.
|
||||
|
||||
With our `kube` driver created, we can now introduce another architecture into
|
||||
the mix, for example, like before we can use `arm64`:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--append \
|
||||
--bootstrap \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--platform=linux/arm64 \
|
||||
--node=builder-arm64 \
|
||||
--driver-opt=namespace=buildkit,nodeselector="kubernetes.io/arch=arm64"
|
||||
```
|
||||
|
||||
If you list builders now, you should be able to see both nodes present:
|
||||
|
||||
```console
|
||||
$ docker buildx ls
|
||||
NAME/NODE DRIVER/ENDPOINT STATUS PLATFORMS
|
||||
kube kubernetes
|
||||
builder-amd64 kubernetes:///kube?deployment=builder-amd64&kubeconfig= running linux/amd64*, linux/amd64/v2, linux/amd64/v3, linux/386
|
||||
builder-arm64 kubernetes:///kube?deployment=builder-arm64&kubeconfig= running linux/arm64*
|
||||
```
|
||||
|
||||
You should now be able to build multi-arch images with `amd64` and `arm64`
|
||||
combined, by specifying those platforms together in your buildx command:
|
||||
|
||||
```console
|
||||
$ docker buildx build --builder=kube --platform=linux/amd64,linux/arm64 -t <user>/<image> --push .
|
||||
```
|
||||
|
||||
You can repeat the `buildx create --append` command for as many different
|
||||
architectures that you want to support.
|
||||
|
||||
## Rootless mode
|
||||
|
||||
The kubernetes driver supports rootless mode. For more information on how
|
||||
rootless mode works, and it's requirements, see [here](https://github.com/moby/buildkit/blob/master/docs/rootless.md).
|
||||
|
||||
To enable it in your cluster, you can use the `rootless=true` driver option:
|
||||
|
||||
```console
|
||||
$ docker buildx create \
|
||||
--name=kube \
|
||||
--driver=kubernetes \
|
||||
--driver-opt=namespace=buildkit,rootless=true
|
||||
```
|
||||
|
||||
This will create your pods without `securityContext.privileged`.
|
Loading…
Reference in New Issue